Dharmabad Shikshan Sanstha's

LAL BAHADUR SHASTRI MAHAVIDHYALAYA, DHARMABAD PROFORMA FOR PROGRAM AND COURSE OUT COME (2.6.1)

Name of the Teacher: Dr Kanse K S

Academic Year: 2018-19

Program: B.Sc.

Class: First Year Sem I Subject: Physics

Course Code: CCPI (Section A) Paper I Paper Title: Mechanics and Properties of Matter

Unit	Unit Name	Topics	Unit wise
No			outcome
Ι	Mechanics	Frames of reference, Laws of Mechanics (Newton's Laws of motion), inertial frame of reference, Center of Mass. Conservation of momentum. Work, energy work energy Theorem, Conservation Of energy, Angular velocity and angular momentum, Angular Momentum and Torque, Conservation of angular momentum, Newton's law of Gravitation, Keplar's laws of Planetary Motion , Keplar's deduction from Newton's laws, Gravitational Field, Gravitational Intensity, Gravitational Field, Gravitational Potential energy ,Potential and field Intensity due to uniform Solid Sphere at a point (Point inside and outside).	Will be able to determine gravitational force, intensity, potential etc corresponding any two objects as well as work, power kinetic energy etc.
Ш	Surface Tension	Definition of Surface Tension, Curvature pressure and Surface Tension, Difference of pressure on two sides of liquid surface, Expression for Excess Pressure inside a Spherical Drop and spherical Soap Bubble, Surface Tension by Jaeger's Method, Surface Tension by Ferguson Method.	Can find experimentally surface tension of any surface and excess pressure across any curved surface.
Ш	Viscosity	Introduction, Coefficient of Viscosity, Streamline flow, critical velocity, Bernoulli's theorem, (Kinetic energy, Potential energy, Pressure energy) Poiseuille's equation for the flow of liquid through a tube, Determination of coefficient viscosity by Poiseuille's Method.	Can determine coefficient of viscosity of any fluid.
IV	Elasticity	Definition of three types of Elastic stress and Strains, Deformation of cube (Bulk Modulus),Modulus of Rigidity and Young's	Can determine coefficient of viscosity of

modulus, Relation connecting elastic constants,	any fluid.
Twisting couple on a cylinder or a (wire),	
Tensional pendulum. Bending of Beam, Bending	
Moment, Cantilever (Weight of the beam	
ineffective, Weight of the beam is effective),	
Depression of a Beam supported at the ends and	
loaded at the centre, Determination of Y by	
bending of beam.	

Specify Course Outcome: After completion of this course the students will be able to

- 1) Calculate gravitational potential, gravitational potential energy and gravitational intensity of any objects.
- 2) Determine viscosity of fluids, surface tension of various surfaces and can also find all modulus of elasticity.

Signature of Teacher

Name of the Teacher: **Dr Y. S. Joshi**

Department: Physics

Program: B.Sc.

Class: First Year Sem I Subject: Physics

Course Code: CCP- I (Section B) Paper II

Paper Title: Mathematical methods in Physics

Unit	Unit Name	Topics	Unit-wise Outcomes
Number			
I	Vector Analysis	Introduction to Scalars, Vectors, Dot products and Cross Product of two vectors, Vector triple product, Scalar triple product, Scalar and vector field , Gradient of a scalar field , Divergence of a vector field and Curl of a vector field and their Physical interpretation , Laplacian Operator (\Box^2), Line integral, Surface integral, Volume integral, Gauss's divergence theorem, Stokes's theorem, Green's theorem (Statements only).	 Knowledge of concepts in vectors. Use of them to understand various phenomenon and their physical significance
Π	Complex variables	Introduction, Definition, complex algebra (Addition, Subtraction, Multiplication, Division, conjugate complex number), Argand diagram, Graphical representation of Sum, Difference, product and Quotient of complex number, Properties of moduli ,arguments and geometry of complex numbers, Rectangular, polar and exponential form of complex numbers.	Students will be able to apply the concept of complex variables
III	Partial Differentiation	Definition of Partial Differentiation, total Differentiation, and Chain rule, Order of Differentiation, Change of variables from Cartesian to Polar Co-ordinates, Implicit, Condition for maxima and minimum (without proof), Solutions Some Partial Differential Equations : Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of spherical symmetry, rectangular symmetry.	This unit will enable the students to solve the problems related to partial differentiation
IV	Fourier series	Introduction of Periodic Functions, Definition of Fourier Series, Evaluation of the coefficients of Fourier series, Cosine series, Sine series, Dirichlet's Conditions, Graphical representations of even and odd functions, Advantages of Fourier series, Physical applications of Fourier series analysis: Square wave and half wave Rectifier.	Fourier Analysis unit will enable the Students to analyze the periodic functions.

Specify Course Outcome:

After completion of this course students will be able

- 1. To apply the concept of vectors and complex variables to various physical quantities.
- 2. This course will also enable the students to solve the problems related to partial differentiation. Fourier Analysis unit will enable the students to analyze the periodic functions.

Signature of Teacher

Dr. Y S Joshi

Name Of the Teacher: **Dr Tak A S**

Academic Year : 2018-19

Program: B.Sc.

Class: First Year Sem II Subject: Physics

Course Code: CCPII (Section A) Paper III

Paper Title : Heat and Thermodynamics

Unit	Unit Name	Topics	Unit
No			wise
			outcome
Ι	Kinetic Theory	Mean free path, Transport Phenomena, Viscosity of	Majority
		Gases, Thermal Conductivity of Gases, Diffusion,	students
		Inter relation between three transport coefficients	passed
			-
II	Low	Andrew's Experiment on CO2, Amagat's	Majority
	Temperature	Experiment, Behavior of Gases at high pressure,	students
	Physics	Porous Plug Experiment, Vander wall's Equation of	passed
	-	State, Critical Constants, Corresponding states,	-
		Coefficients of Vander wall's Equation, Boyles	
		temperature, Temperature of Inversion Relation	
		between Boyles temperature and Temperature of	
		Inversion, Reduced Equation of State, properties of	
		matter near critical point	
III	Thermodynamics	First Law of Thermodynamics, Relation connecting	Majority
		P, V and T in an Adiabatic Process, Second Law of	students
		Thermodynamics (Kelvin and Clausius statements),	passed
		Carnot's cycle, Carnot's heat Engine , Carnot's	
		Theorem, Entropy , Entropy of Irreversible	
		processes, entropy of reversible process Third Law	
		of Thermodynamics Thermodynamic Relations	
		Maxwell's Thermo dynamical Relations, T- ds	
		equations, Clausius-Clapeyron latent heat	
		equations, Internal energy, Helmholtz' function,	
		Enthalpy	
IV	Theory of	Blackbody radiation, Spectral distribution, Concept	Majority
	Radiation	of Energy Density, Derivation of Planck's law,	
		Deduction of Wien's distribution law, Rayleigh-	passed
		Jeans Law, Stefan Boltzmann Law and Wien's	
		displacement law from Planck's law.	

Specify Course outcome: All students acquired fundamental knowledge and are ready to acquire advance knowledge necessary for research skill development

Signature of Teacher

Name of the Teacher: **Dr Y. S. Joshi**

Academic Year- 2018-19

Program: B.Sc.

Class: First Year Sem II Subject: Physics

Course Code: CCP- II (Section B) Paper IV

Paper Title: Electricity and Magnetism

Unit	Unit Name	Topics	Unit-wise Outcomes
Number			
Ι	Basic Electricity Principles And AC Currents	Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series- parallel combinations. AC Electricity and DC Electricity. Familiarization with multimeter, voltmeter and ammeter. AC through LCR circuit, (series resonance and Parallel Resonance circuits) Complex numbers and Their Applications in solving AC Circuit Problems, Complex Impedance and Resistance, Power in AC circuit Power Factor, Choke, Transformer Principle, with current and voltage ratios; Efficiency of transformer Types of Transformers: step down and Step up, Power loss In Transformer, AC bridge, Owns Bridge.	Understand the basic difference between the DC and AC circuits and their functioning.
Π	Electromagnetic Induction	Definition, Faradays Law of Electromagnetic Induction, Self induction, self induction of a Solenoid, Mutual induction, Mutual Induction of a pair of coil, Work done in Establishing Current in an Inductance, Mutual inductance of a Co axial Solenoids, Problems.	Knowledge of the Electromagntic induction. Able to understand the principle of Galvanometer.
III	Magnetization	Introduction, Magnetic Induction, Intensity of magnetization, Permeability, Susceptibility, Relation between Permeability and Susceptibility, Hysteresis curve, I-H curve By magnetometer Method, Moving coil type Ballistic Galvanometer, logarithmic decrement, damping correction,	Students understands the concepts of static and dynamical electrical magnetic fields
IV	Magnetostatics	Definition of Magnetic Field, Lorentz Force, Force on a Current Carrying Conductor, Magnetic Dipole Moment, Biot And Savert Law, and Its Applications to straight conductor, Circular coil, Amperes Circuital Law and its Curl.	Able to understand the concepts of magnetization & Laws. Application of these laws to obtain the magnetic field.

Specify Course outcome:

- 1. This course is of most applied nature and will enable the students to understand the role of electricity in everyday life, relate electrical conduction.
- 2. To understand the working principles of various electrical components and gadgets.

Signature of Teacher

Dr. Y S Joshi

Name Of the Teacher : **Dr Kanse K S**

Academic Year : 2018-19

Paper Title : Wave and Oscillations

Program: B.Sc.

Class : Second Year SemIII Subject: Physics

Course Code :CCP III (Sec A) Paper VI

Unit Unit Name Unit wise outcome Topics No I Waves velocity and particle Will be able to Wave velocity, Differential equation of wave motion, Energy determine various of a plane progressive wave, Equation of physical motion of a vibrating string, Velocity of parameters of transverse waves along a string, Frequency waves. and period of vibration of a string, Analytical treatment of stationary waves Will be able to find Π Stationary Waves (closed end& open end pipe at the other end), density and Investigation of pressure and density changes pressure at various at displacement Nodes and Antinodes, positions of Distribution of Energy in a stationary wave, stationary waves Energy is not transferred in a stationary waves. Ш Free Free Vibrations. Forced Vibrations. Will be able to find and Resonance, Oscillatory Motion of a particle Forced densitv and Vibrations from energy considerations, Damped simple pressure at various Aperodic, harmonic motion, Critically positions of Damped Oscillatory Motions. Effect of stationary waves damping on Frequency, Forced Vibrations, resonance and sharpness of resonance. IV Acoustic and Reverberation, Reverberation Will be able to time, Ultrasonic Derivation of Reverberation Time (Sabine's determine formula). Absorption coefficient, reverberation time Determination absorption of an auditorium of coefficient(reverberation Chember Method), and can generate Conditions for good acoustical designs of waves ultrasonic auditorium, Ultrasonic, Piezo-electric & by any of the magnetostriction effect, Piezoelectric methods. Oscillator. magnetostriction oscillator. Detection of ultrasonic waves: Acoustic grating Books

Specify Course outcome: After completion of this course the students will be able to

- 1) Determine various physical parameters of waves
- 2) Determine reverberation time of an auditorium and can generate ultrasonic waves by any of the methods
- 3) Different between free and forced vibrations
- 4) Determine reverberation time of an auditorium and can generate ultrasonic waves by any of the methods.

Signature of Teacher

Name Of the Teacher : Dr Tak A S

Academic Year : 2018-19

Program: B.Sc.

Class : Second Year Sem III Subject: Physics

Course Code : CCP III(Sec B)Paper VII and Theory of Relativity

Paper Title : Statistical Physics, Electromagnetic

Unit	Unit Name	Topics	Unit
No			wise
			outcome
Ι	Statistical Basis	Statistical Basis, probability , probability and	Majority
	and	frequency, permutation and combinations, Micro	students
	Thermodynamics	and Macro states, Thermodynamic probability,	passed
		Entropy & probability	
II	Classical	Phase space, Maxwell-Boltzmann Distribution law,	Majority
	Statistics and	Quantum Statistics- Bose- Einstein Distribution	students
	Quantum	law, Fermi- Dirac Distribution law, comparison of	passed
	Statistics	M. B., B.E. and F. D. statistics, Application of	
		Quantum statistics to Photon gas and Electron gas.	
III	Electromagnetic	Ampere's Law and Steady State current,	Majority
	Theory and	Generalization of Ampere's Law and displacement	students
	Maxwell's	current, Maxwell's Equations, Derivation of	passed
	Equations	Maxwell's Equations, The electromagnetic Energy,	
		and Poynting Vector, The wave Equation.	
IV	Relativity	Introduction, frame of reference, , Postulates of	Majority
		Special Theory of Relativity, Galilean	students
		Transformations, Lorentz Transformations, Length	passed
		Contraction, Time dilation, Velocity addition,	
		relativity of mass, Mass energy relation.	

Specify Course outcome : All students acquired fundamental knowledge and are ready to acquire advance knowledge necessary for research skill development

Signature of Teacher

Name Of the Teacher : **Dr Kanse K S**

Academic Year : 2018-19

Program: B.Sc.

Class : Second Year Sem VI Subject: Physics

Course Code :CCPIV (Sec A) Paper VIII

Paper Title : Optics and Lasers

Unit	Unit Name	Topics	Unit wise
No			outcome
Ι	Geometrical Optics	Cardinal Points of an Optical System(six points), Coaxial Lens System (equivalent focal length and cardinal points), Huygens Eyepiece, Ramsden Eyepiece and their cardinal points.	Will be able to determine cardinal points and focal length of lens systems
II	Interference and Diffraction	Newton's Rings, Determination of wavelength of Sodium light, Michelson Interferometer, Determination of wavelength of monochromatic light, Difference in wavelength between two neighboring spectral lines. Diffraction: Fresnel and Fraunhofer diffraction, Fraunhofer's diffraction due to single and double slit, Plane diffraction grating, Determination of wavelength of Sodium light, Rayleigh criterion, Resolving power of grating, Resolving power of Prism.	Will be able to determine wavelength by interference and diffraction. And also RP optical instruments
III	Polarization	Polarization by Reflection, Brewster's law, Malus law, Double refraction, Nicol prism, Nicol prism as an analyzer, Huygen's explanation of double Refraction in Uniaxial crystals, Quarter wave plate, Half wave plate, Optical Activity, Specific rotation, Laurent's half shade polarimeter.	Will be able to polarize ordinary light and analyze polarized light
IV	Lasers	Spontaneous & stimulated emission, absorption, Einstein coefficients (definitions), Population inversion, Optical & electrical pumping, Properties of lasers, He-Ne laser and diode laser,	Will be able to understand the process of production of laser

Specify Course outcome : After completion of this course the students will be able to

- 1) Determine cardinal points and focal length of lens systems
- 2) Determine wavelength by interference and diffraction. And also RP optical instruments
- 3) Polarize ordinary light and analyze polarized light.
- 4) Understand the process of production of laser.

Signature of Teacher

Name Of the Teacher : **Dr Tak A S**

Academic Year : 2018-19

Program: B.Sc.

Class: Second Year Sem IV Subject: Physics

Course Code : CCP-IV (Sec B) Paper IX

Paper Title : Basic Electronics

Unit	Unit Name	Topics	Unit
No			wise
			outcome
Ι	Regulated	Introduction, ordinary D. C. power supply, Voltage	Majority
	Power Supply	regulation, , Need of regulated power	students
		supply, Types of regulators, for low voltage, for	passed
		high voltage, Zener diode voltage regulator,,	
		Transistor series voltage regulator Series feedback	
		voltage regulator short circuit protection,	
		Transistor shunt voltage regulator, Definition of	
		Line and Load regulation	
II	Bipolar Junction	Transistor Connections: Common base, common	Majority
	Transistors (BJT	emitter, common collector, Characteristics of	students
		common base, common emitter, common collector	passed
		connections, transistor Load line Analysis,	
		Operating point. Hybrid parameters (or h	
		parameters) Determination of h-parameters,	
		Analysis	
		of common emitter amplifier and common using h-	
		parameters (current gain, voltage gain, power	
		gain, input resistance and output resistance)	
III	Operational	Operational Amplifier, Basic circuit of differential	Majority
	Amplifier	amplifier, common Mode and differential	students
		mode signals, block diagram of Op-Amp, schematic	passed
		symbol, ideal Characteristics, input offset	
		voltage; input offset current, input bias current,	
		input impedance, Output impedance, open loop	
		gain, Slew rate, Inverting amplifier.	
IV	Sinusoidal	Sinusoidal Oscillator, Types of sinusoidal	Majority
	Oscillators	Oscillators, Oscillatory circuit, Positive feedback	students
		Amplifier- Oscillator, Barkhausen	passed
		Criterion, Hartley oscillator, Colpitt's oscillator, R-	
		C	
		Network, Phase shift oscillator	

Specify Course outcome : All students acquired fundamental knowledge and are ready to acquire advance knowledge necessary for research skill development

Signature of Teacher

Name Of the Teacher :**Dr Tak A S**

Academic Year 2018-19

Program: B.Sc.

Class: Third Year Sem V Subject: Physics

Course Code : DSEP I (Sec A) Paper XII

Paper Title : Quantum Mechanics

Unit	Unit Name	Topics	Unit
No			wise
			outcome
Ι	Particle	Introduction, Photoelectric Effect, Quantum Theory	Majority
	Properties of	of Light, The Compton Effect, de Broglie waves,	students
	Waves	Wave function, de Broglie Wave Velocity, Wave	passed
		and Group velocities, G. P. Thomson experiment,	
		The Uncertainty principle and its applications	
II	Schrödinger's	Introduction, Schrödinger's Equation: Time	Majority
	Equation	dependent form, Probability current, Expectation	students
	_	Values, Operators, Schrödinger's Equation: Steady-	passed
		state form, Eigen values and Eigen functions,	_
		Problems	
III	Applications of	Introduction, The particle in a box: energy	Majority
	Quantum	quantization, The particle in a box: wave functions,	students
	Mechanics	The particle in a box: Momentum Quantization, The	passed
		Harmonic Oscillator, The Harmonic Oscillator-	
		Energy level, The particle in a three dimensional	
		box	
IV	Quantum	Schrödinger's equation for the Hydrogen Atom in	Majority
	Theory of	spherical polar co- ordinates, separation of	students
	Hydrogen Atom	Variables, Quantum numbers –Total quantum	passed
		number, Orbital quantum number, Magnetic	-
		quantum number, spin quantum number	

Specify Course outcome: All students acquired fundamental knowledge and are ready to acquire advance knowledge necessary for research skill development

Signature of Teacher

Name Of the Teacher : **Dr Chawhan A G**

Academic Year 2018-19

Program: B.Sc.

Class : Third Year SemV Subject: Physics

Course Code : DSEP I (Sec B) Paper XIIIA

Paper Title : Solid State Physics

Unit	Unit Name	Topics	Unit wise outcome
No I	Crystal	Introduction Crystal Lattices and	Knowledge about Crystal Lattices
	Structure	Translation vectors, Unit cell, Basis, Symmetry operations, Point groups, space group, Types of lattices, Simple crystal structure (HCP, FCC, BCC, SC), Structure of Diamond, NaCl, Problems.	& Translation vectors, Unit Cell, Basis. Different types of Symmetry Operations, Method of calculations Packing fraction of SC, BCC, FCC, HCP crystal Structure.
II	Bonding in Solids and X-Ray Diffraction	Inter atomic forces and types of bonding, ionic bond, covalent bond, metallic bond, hydrogen bond, Vander-waal's bond. X-ray diffraction, Bragg's law, Laue's method, Rotating crystal method	Definition, Concept & criteria of formation of Ionic bond, Covalent bond, Metallic Bond, Hydrogen bond, Vander Waal's bond & their properties. Interaction of X-Rays with matter, Derivation of Bragg's law, Crystal structure determination method.
III	Thermal Properties of Solids	Specific heat of gases, Specific heat of solids, Classical theory of Lattice heat Capacity, Einstein's theory of heat Capacity, Debye's theory of specific heat of solids, Limitations of Debye model	Calculations of Specific heat of Monoatomic, Diatomic & Triatomic Gases. Derivations of Total Energy & Specific heat by using Classical theory. Failure of Classical theory , Derivations of Total Energy & Specific heat by using Einstein's theory & behaviour of specific heat at high & Low temperature. Failure of Einstein's theory ,Derivations of Total Energy & Specific heat by using Debye's theory & behaviour of specific heat at high & Low temperature
IV	Free Electron Theory of Metals	The outstanding properties of metals, Drude-Lorentz theory, Thermal conductivity, Electrical conductivity, Widemann- Franz relation, Sommerfeld Model, Electrical conductivity and Ohms law, Electronic specific heat, Thermionic emission, escape of electrons from metal.	Explain Drude-Lorentz theory, Derivation of Thermal & Electrical conductivity and Wiedeman-Franz Relation. Detailed analysis of Sommerfeld's theory, Calculation of Electronic Specific heat, Theory of Thermionic Emission & Escape of electrons from metals

Specify Course outcome: After completion of this course students will be able to

1. Understanding of crystal systems.

2. Understand of various types bonds existing in solid.

3. Understand various theories related to calculation of Specific heat of Solids.

4. Understand concepts of Thermal & Electrical conductivity, Ohm's law, Thermionic Emission & Escape of electrons from metals

Specify Program outcome

The course provides fundamental knowledge of Crystallography, principles behind the formation of matter their structure & physical properties. The course also enables the students to understand the relationship between the internal structure & various properties of matter like periodicity, structure & bonding in solids. At the end of this course, student will be able to classify the materials in different classes based on their physical, thermal, electrical & magnetic properties.

Signature of Teacher

.

Dr Chawhan A G

Name Of the Teacher : **Dr Kanse K S**

Academic Year 2018-19

Program: B.Sc.

Class: Third Year Sem VI Subject: Physics

Course Code: DSEPII (Sec A) Paper XIV Physics

Paper Title: Atomic, Molecular and Nuclear

Unit	Unit Name	Topics	Unit wise
No			outcome
Ι	Atomic Physics	The Vector Atom Model, Quantum numbers associated with the vector atom model, LS and J- J coupling, The Pauli's exclusion Principle, Selection rules, Intensity rules, Interval rule, Normal Zeeman effect, Anomalous Zeeman effect, Stark effect.	Will be able to understand various properties of atomic physics
Π	Molecular Spectra	Regions of Electromagnetic Spectra, Classification of Molecular Spectra, Theory of pure rotational spectra, Theory of rotation- vibration spectra, Raman Effect, Experimental study,	Will be able to study and analyze various properties of molecular spectra.
III	Nuclear Fission and Nuclear Reactions	Nuclear Fission, the fission products, energy release in fission, nuclear transmutation reactions, Conservation laws, Nuclear reaction kinematics	Will be able to study and analyze various properties of molecular spectra.
IV	Nuclear Fusion and its applications	Nuclear fusion, p-p chain reaction as the source of energy in the Sunlike stars, thermal nuclear reactor, the neutron cycle, controlled and uncontrolled thermonuclear reactions.	Will be able to apply principle of nuclear fusion to various thermonuclear process.

Specify Course outcome: After completion of this course the students will be able to

- 1) Understand various properties of atomic physics
- 2) Study and analyze various types of molecular spectra
- 3) Understand nuclear fission and allied properties
- 4) Apply principle of nuclear fusion to various thermonuclear process

Signature of Teacher

Name Of the Teacher : Dr Chawhan A G

Academic Year 2018-19

Program: B.Sc.

Class Third Year Sem VI Subject: Physics

Course Code : DSEP II (Sec B) Paper XVA

Paper Title : Digital and Communication

Electronics

Unit No	Unit Name	Topics	Unit wise outcome
I	Number Systems	Number System:- Decimal numbers, Binary numbers, Binary arithmetic, Ones complement representation, Twos complement representation, Octal Numbers, Hexadecimal numbers, Inter-conversions of number systems, Binary coded decimal (BCD), Gray code, Excess-3 code.	Explain Binary numbers, & Binary Arithmetic, One's & Two's complement representation. Explain Octal & Hexadecimal number system. Inter conversion of from one number system to other number system , BCD numbers system, Obtain Gray & Excess codes of given binary numbers
Π	Logic Gates	AND gate, OR gate, NOT gate, NAND gate, NOR gate, EX-OR and EX-NOR gates, Universal properties of NAND and NOR gates. Boolean operations, logic expressions for 2,3 & 4 inputs, laws of Boolean algebra, De-Morgen's theorems, SOP form of Boolean expressions, simplification of Boolean expressions using K- maps (up to 4 variables),Half adder, Full adder	Study of Logic gates like AND ,OR ,NOT ,NAND, NOR , EX- OR & EX-NOR with truth tables & logic symbols. Study of Boolean algebra, De-Morgan's theorem. Deriving logic expressions for 2,3 & 4 inputs. Study of SOP form of Boolean expressions using K-maps (upto 4 variables), Half & full Adder
III	Modulation and Demodulation	Introduction, Types of Modulation, Expression for A. M. voltage, AM waves, Frequency spectrum of AM wave, Power Output in AM, Expression for frequency modulated voltage, Principle of demodulation, linear diode AM detector or	Study different types of Modulation. Derive expression for AM wave & power relations of AM wave. Derive expression for FM wave.

		demodulator.	Study of general
			principles of
			demodulation and
			working of Linear
			diode detector.
IV	Communication Electronics	Introduction, Block diagram of basic communication system, Essential elements of A.M. Transmitter. A.M. receiver: Turned Radio Frequency (TRF) Receiver, Super heterodyne receiver, Characteristics of radio receivers: sensitivity, selectivity, fidelity & their measurements.	Study of Basic communication system by means of block diagram. Study of functions of AM receivers & working of Tuned Radio frequency receiver, Superheterodyne receiver with the help of block diagram. Study of Characteristics of Radio Receivers like Sensitivity, Selectivity fidelity & their measurements.

Specify Course outcome: After completion of this course students will be able to

1. Understanding of various number systems and their inter conversion.

2. Understand working of various types of Logic gates & the simplification of logic expression.

- 3. Understand working of AM & FM communication system.
- 4. Understand working of AM radio receivers.

Specify Program outcome

The course enables the students to understand the importance of inter convertibility of various number systems, principles of various digital gates and working of various communication systems. After completing this course students will be in a position to know the working of AM & FM communication systems i.e. modulators, demodulators, transmitters & receivers

Signature of Teacher

Dr Chawhan A G