Dharmabad Shikshan Sanstha's

LAL BAHADUR SHASTRI MAHAVIDHYALAYA, DHARMABAD

PROFORMA FOR PROGRAM AND COURSE OUT COME (2.6.1)

Name Of the Teacher: **Dr Kanse K S**

Academic Year : 2020-21

Program: B.Sc.

Class: First Year Sem I Subject: Physics

Course Code: CCPI (Sec A) Paper I

Paper Title: Mechanics and Properties of Matter

Unit No	Unit Name	Topics	Unit wise
I	Mechanics	Laws of Mechanics (Newton's Laws of Motion), Newton's Law of Gravitation, Keplar's Law of Planetary Motion, Gravitational Field, Gravitational Intensity, Gravitational Potential, Gravitational Potential energy, Conservation Law, Work, Power, Kinetic Energy (Work Energy Theorem), Conservation of energy for a particle energy function, Motion of a body near the surface of earth, Types of conservative and non- conservative forces	outcomeWill be able to determine gravitational force, intensity, potential etc corresponding any two objects as well as work, power kinetic energy etc.
Π	Surface Tension	Molecular Forces, Surface Tension & its explanation, Pressure difference across a curved surface, Expression for Excess Pressure inside a Spherical Drop and spherical Soap Bubble, Surface Tension by Jaeger's Method, Surface Tension by Ferguson Method.	Can find experimentally surface tension of any surface and excess pressure across any curved surface.
III	Viscosity	Introduction, Coefficient of Viscosity, Streamline flow, critical velocity, Reynolds Number & its significance, Bernoullies Theorem, Poiseuille's equation for the flow of liquid through a tube, Experimental determination of coefficient viscosity by Poiseuille's Method.	Can determine coefficient of viscosity of any fluid.
IV	Elasticity	Introduction, Hooke's Law, Elastic Constants (Y, K & $\dot{\eta}$), Poisson's Ratio, Twisting couple on a cylinder or a (wire), Torsional pendulum ,Bending	Can determine the young, rigidity and

of Beam, Bending Moment, Cantilever (Weight of	bulk modulus
the beam is ineffective, Weight of the beam is	of any
effective), Depression of a Beam supported at the	material.
ends and loaded at the Centre, Determination of Y	
by bending of beam.	

Specify Course outcome: After completion of this course the students will be able to

- 1) Calculate gravitational potential, gravitational potential energy and gravitational intensity of any objects.
- 2) Determine viscosity of fluids, surface tension of various surfaces and can also find all modulus of elasticity.

Signature of Teacher

Dr Kanse K S

Name of the Teacher: **Dr Y. S. Joshi**

Department: Physics

Program: B.Sc.

Class : First Year Sem I

Subject: Physics

Course Code: CCP- I (Sec B) Paper No. II Paper Title: Mathematical methods in Physics

Unit	Unit Name	Topics	Unit-wise
Number			Outcomes
I	Complex variables	Introduction, Definition, complex algebra (Addition, Subtraction, Multiplication, Division, conjugate complex number), Argand diagram, Graphical representation of Sum, Difference, product and Quotient of complex number, Properties of moduli ,arguments and geometry of complex numbers, Rectangular, polar and exponential form of complex numbers.	Students will be able to apply the concept of complex variables
Π	Vector Analysis	Introduction to Scalars, Vectors, Dot products and Cross Product of two vectors, Vector triple product, Scalar triple product, Scalar and vector field , Gradient of a scalar field , Divergence of a vector field and Curl of a vector field and their Physical interpretation , Laplacian Operator (\Box^2), Line integral, Surface integral, Volume integral, Gauss's divergence theorem, Stoke's theorem, (Statements only), Vector identities.	 Knowledge of concepts in vectors. Use of them to understand various phenomenon and their physical significance
Ш	Partial Differentiation	Definition of Partial Differentiation, Order or Successive Differentiation, total Differentiation and Chain rule, Change of variables from Cartesian to Polar Co- ordinates, Condition for maxima and minimum (without proof), Linear Homogeneous Partial differential equations with constant coefficients, Rules for finding the complementary function.	This unit will enable the students to solve the problems related to partial differentiation
IV	Fourier series	Introduction of Periodic Functions, Definition of Fourier Series, Evaluation of the coefficients of Fourier series, Cosine series, Sine series, Dirichlet's Conditions, Graphical representations of even and odd functions, Advantages of Fourier series, Physical applications of Fourier series analysis: Square wave and half wave Rectifier.	Fourier Analysis unit will enable the studetns to analyze the periodic functions.

Specify Course Outcome:

After completion of this course students will be able

- 1. To apply the concept of vectors and complex variables to various physical quantities.
- 2. This course will also enable the students to solve the problems related to partial differentiation. Fourier Analysis unit will enable the students to analyze the periodic functions.

Signature of Teacher

Dr Y. S. Joshi

Name of the Teacher: **Dr TAK A S**

Academic Year: 2020-21

Program: B.Sc.

Class : First Year Sem II Subject: Physics

Course Code: CCPII (Sec A) Paper III

Paper Title : Heat and Thermodynamics

Unit	Unit Name	Topics	Unit
No			wise
			outcome
Ι	Thermometry	Types of Thermometers, Centigrade and Fahrenheit	Majority
		scale, relation between Celsius, Kelvin, Fahrenheit	students
		& Rankine scales, Platinum resistance thermometer,	passed
		Seebeck effect.	
II	Real Gases and	Behavior of gases at high pressure, Boyle	Majority
	Their Behavior	temperature, Andrew's Experiment on CO2,	students
		Amagat's Experiment, Vander wall's Equation of	passed
		State, Critical Constants, Corresponding states,	
		Coefficients of Vander wall's Equation, Reduced	
		Equation of State, Joule Thomson Porous Plug	
		Experiment, Temperature of Inversion, Relation	
		between Boyle temperature and Temperature of	
		Inversion	
III	Transport	Molecular Collisions, Mean free path, Expression	Majority
	Phenomenon in	for mean free path, Transport Phenomena, Viscosity	students
	Gases	of Gases, Thermal Conductivity of Gases,	passed
		Diffusion, Inter relation between three transport	
		coefficients.	
IV	Thermodynamics	First Law of Thermodynamics, Relation connecting	Majority
	and	P, V and T in an Adiabatic Process, Second Law of	students
	Thermodynamical	Thermodynamics (Kelvin and Clausius statements),	passed
	Relations	Carnot's cycle, Carnot's heat Engine, Carnot's	
		Theorem, Entropy, Entropy of Irreversible	
		processes entropy of reversible process, Third Law	
		of Thermodynamics. Internal energy, Helmholtz'	
		function, Enthalpy, Gibb's function, Maxwell's	
		Thermodynamical Relations, T- dS equations,	
		Clausius-Clapeyron latent heat equations.	

Specify Course outcome : All students acquired fundamental knowledge and are ready to acquire advance knowledge necessary for research skill development

Signature of Teacher

Name Of the Teacher : **Dr Y. S. Joshi**

Academic Year : 2020-21

Department: Physics

Class : First Year Sem II

Course Code: CCP- II (Sec B) Paper IV

Paper Title: Electricity and Magnetism

Unit	Unit Name	Topics	Unit-wise
Number			Outcomes
I	Electrostatics and Magnetostatics	Concept of electric field, electric flux, Gauss's law, conservative nature of electric filed, concept of electric potential, potential energy of a system of charges, energy density in an electric field. Concept of Magnetic Field (B) and magnetic flux (Φ), Lorentz Force, Force on a current carrying conductor, Biot and Savert,s Law, Applications of Biot- Savert,s law to straight and circular current carrying conductor, Amperes circuital law (Integral form), Curl of magnetic field (Ampere's circuital law differential form). Motion of charged particles in uniform electric field, Motion of charged particle in magnetic field, Maxwell's displacement	Students understands the concepts of static and dynamical electrical magnetic fields.
II	Magnetization	current. Introduction, Magnetic Induction (B), Flux density, Intensity of magnetization (I), Intensity of magnetizing field (H) Permeability, Susceptibility, Relation between Permeability and Susceptibility, Hysteresis curve, Brief introduction of ferromagnetic, paramagnetic and diamagnetic phenomenon, I-H curve By magnetometer method, Principle and construction of Moving coil type Ballistic Galvanometer with theory ($q\alpha\theta$).	Able to understand the Concepts of magnetization and principle of Galvanometer.
III	Time Varying (Dynamic) Fields (Waves)	Definition of electromagnetic induction, Faraday's Law of Electromagnetic Induction, Lenz's law, Self induction, Self induction of a Solenoid, Mutual induction, Mutual Induction of a pair of coil, Work done in establishing current in an inductance, Mutual inductance of a Co axial solenoids, Problems.	Knowledge of the Electromagntic induction
IV	Alternating Current circuits	Brief introduction to AC through Capacitor and Inductor, Nature of Impedance(z) and Reactance(x) of Inductance (zL&xl),	Understand the basic difference between the DC

Capacitance	(zc&xc)	and	and AC	
Resistance(zR&xF	R), Complex numb	er and J-	circuits and	their
operator, Complex	Impedance and re	eactance,	functioning.	
Application of Co	mplex numbers in	n solving		
AC Circuit (Not	vector diagram)	, L-C-R		
(Series resonance	and Parallel re	sonance)		
circuits. Power in	n AC circuit and	d Power		
Factor, Principle,	working and t	types of		
transformers (step	up and step do	wn with		
figures), Current,	voltage and turns	ratio of		
transformer, Effic	iency of transform	mer, AC		
bridges (Wheatstor	ne bridge).			

Specify Course outcome:

- 1. This course is of most applied nature and will enable the students to understand the role of electricity in everyday life, relate electrical conduction.
- 2. To understand the working principles of various electrical components and gadgets.

Signature of Teacher

Dr. Y S Joshi

Name Of the Teacher : Dr Kanse K. S

Academic Year : 2020-21

Program: B.Sc.

Class : Second Year Sem III Subject: Physics

Course Code : CCP III (Sec A) Paper VI

Paper Title : Wave and Oscillations

Unit Number	Unit Name	Topics	Unit-wise outcome
Unit. I	Waves	Wave velocity and particle velocity, Differential equation of wave motion, Energy of a plane progressive wave, Equation of motion of a vibrating string, Frequency and period of vibration of a string	Will be able to determine various physical parameters of waves.
Unit. II	Stationary waves	Analytical treatment of stationary waves (closed end & open end pipe at the other end), Investigation of pressure and density changes at displacement, Nodes and Antinodes, Distribution of Energy in a stationary wave, Energy is not transferred in a stationary waves.	Will be able to determine various physical parameters of waves.
Unit III	Free and Forced Vibrations	Free Vibrations, Undamped vibrations, Damped Vibrations. Damped SHM in an electrical circuit. Forced Vibrations, Resonance and Sharpness of Resonance, Phase of Resonance ,Examples of forced and resonant vibrations	Will be able to determine various physical parameters of waves.
Unit IV	Acoustics and Ultrasonics	Reverberation, Reverberation time, Derivation of Reverberation Time (Sabine's formula), Absorption coefficient, Determination of absorption coefficient, Acoustic measurements, Conditions for good acoustical designs of an auditorium, Ultrasonics, Piezoelectric Oscillator, Magnetostriction Oscillator, Detection of ultrasonic waves, Acoustic grating, Application of Ultrasonic Waves	Will be able to determine reverberation time of an auditorium and can generate ultrasonic waves by any of the methods.

Specify Course outcome: After completion of this course the students will be able to

- 1) Determine various physical parameters of waves
- 2) Determine reverberation time of an auditorium and can generate ultrasonic waves by any of the methods
- 3) Different between free and forced vibrations
- 4) Determine reverberation time of an auditorium and can generate ultrasonic waves by any of the methods.

Signature of Teacher

Dr. Kanse K S

Name of the Teacher: Dr Tak A S

Academic Year: 2020-21

Program: B.Sc.

Class : Second Year Sem III Subject: Physics

Course Code :CCP III(Sec B)Paper VII and Theory of Relativity

Paper Title : Statistical Physics, Electromagnetics

Unit	Unit Name	Topics	Unit
No			wise
			outcome
Ι	Statistical Basis and	Reverberation, Reverberation time, Derivation of Reverberation Time (Sabine's formula), Absorption	Majority students
	Thermodynamics	coefficient, Determination of absorption coefficient,	passed
		Acoustic measurements, Conditions for good	
		acoustical designs of an auditorium, Ultrasonics, Piezoelectric Oscillator, Magnetostriction	
		, E	
		Oscillator, Detection of ultrasonic waves, Acoustic	
п	Classical	grating, Application of Ultrasonic Waves	Maiarity
II		Phase space, Maxwell-Boltzmann Distribution law,	Majority
	Statistics and	Quantum Statistics-Bose- Einstein Distribution law,	students
	Quantum	Fermi- Dirac Distribution law, comparison of M.	passed
	Statistics	B., B.E. and F. D. statistics, application of Quantum	
TTT		statistics to Photon gas and Electron gas	
III	Electromagnetic	Ampere's Law and Steady State current,	Majority
	Theory and	Generalization of Ampere's Law and displacement	students
	Maxwell's	current, Maxwell's Equations, Derivation of	passed
	Equations	Maxwell's Equations, The electromagnetic Energy	
		and Poynting Vector, The wave Equation for free	
TT 7	D 1 d 1	space.	
IV	Relativity	Introduction, frame of reference, Postulates of	Majority
		Special Theory of Relativity, Galilean	students
		Transformations, Lorentz Transformations, Length	passed
		Contraction, Time dilation, Velocity addition,	
		relativity of mass, Mass energy relation. (

Specify Course outcome : All students acquired fundamental knowledge and are ready to acquire advance knowledge necessary for research skill development

Signature of Teacher

Name of the Teacher: **Dr Kanse K S**

Academic Year: 2020-21

Program: B.Sc.

Class : Second Year Sem VI Subject: Physics

Course Code : CCPIV (Sec A) Paper VIII

Paper Title : Optics and Lasers

Unit	Unit Name	Topics	Unit-wise
Number		I	outcome
Unit. I	Geometrical	Cardinal Points of an Optical System (six	Will be able to
	Optics	points), Coaxial Lens System (equivalent	determine
	1	focal length and cardinal points), Huygens	cardinal points
		Eyepiece, Ramsden Eyepiece and their	and focal length
		cardinal points.	of lens systems
Unit. II	Interference and	Interference: Newton's Rings,	Will be able to
	Diffractions	Determination of wavelength of Sodium	determine
		light, Michelson Interferometer,	wavelength by
		Determination of wavelength of	interference and
		monochromatic light. Diffraction: Fresnel	diffraction. And
		and Fraunhofer diffraction, Fraunhofer's	also RP optical
		diffraction due to single and double slit,	instruments
		Plane diffraction grating, Determination of	
		wavelength of Sodium light, Rayleigh	
		criterion, Resolving power of grating.	
Unit III	Polarization	Polarization by Reflection, Brewster's	Will be able to
		law, Malus law, Double refraction, Nicol	polarize ordinary
		prism, Nicol prism as an analyzer,	light and analyze
		Huygen's explanation of double	polarized light
		Refraction in Uniaxial crystals, Quarter	
		wave plate, Half wave plate, Optical	
		Activity, Specific rotation, Laurent's half	
		shade polarimeter.	
Unit IV	Lasers	Spontaneous & stimulated emission,	Will be able to
		absorption, Einstein coefficients	understand the
		(definitions), Population inversion, Optical	process of
		& electrical pumping, Properties of lasers,	production of
		He-Ne laser	laser

Specify Course outcome : After completion of this course the students will be able to

1) Determine cardinal points and focal length of lens systems

2) Determine wavelength by interference and diffraction. And also RP optical instruments

- 3) Polarize ordinary light and analyze polarized light.
- 4) Understand the process of production of laser.

Signature of Teacher

Dr. Kanse K S

Name Of the Teacher : **Dr Tak A S**

Academic Year : 2020-21

Program: B.Sc.

Class : Second Year Sem IV Subject: Physics

Course Code :CCPIV (Sec B) Paper IX

Paper Title : Basic Electronics

Unit	Unit Name	Topics	Unit
No			wise
			outcome
Ι	Semiconductor	Semiconductor, Types of semiconductor, P-N	Majority
	Diodes	Junction diode, Zener diode, Light Emitting Diode,	students
		Photodiode, Varactor diode and their V/I characteristics	passed
II	Bipolar Junction	Transistor Connections: Common base, common	Majority
	Transistors (BJT	emitter, common collector, Characteristics of	students
		common base, common emitter, common collector	passed
		connections, Hybrid parameters (or h parameters)	
		Determination of h-parameters, Analysis of	
		common emitter amplifier and common collector	
		amplifier using hparameters (current gain, voltage	
		gain, power gain, input resistance and output	
TTT	On a metion of	resistance)	
III	Operational Amplifier	Basic circuit of differential amplifier, common	Majority students
	Amplifier	Mode and differential mode signals, block diagram of OpAmp, schematic symbol, ideal Characteristics,	passed
		input offset voltage; input offset current, input bias	passeu
		current, input impedance, Output impedance, open	
		loop gain, CMRR, Slew rate, Inverting amplifier	
		and noninverting amplifier	
IV	Sinusoidal	Oscillator, Types of sinusoidal Oscillators,	Majority
	Oscillators	Oscillatory circuit, Positive feedback Amplifier-	students
		Oscillator, Barkhausen Criterion, Hartley oscillator,	passed
		Colpitt's oscillator, R-C Network, Phase shift	
		oscillator	

Specify Course outcome: All students acquired fundamental knowledge and are ready to acquire advance knowledge necessary for research skill development

Signature of Teacher

Name Of the Teacher : **Dr Tak A S**

Academic Year 2020-21

Program: B.Sc.

Class : Third Year Sem V Subject: Physics

Course Code :DSEP I (Sec A) Paper XII

Paper Title : Quantum Mechanics

Unit	Unit Name	Topics	Unit
No			wise
			outcome
Ι	Particle	Introduction, Photoelectric Effect, Quantum Theory	Majority
	Properties of of Light, The Compton Effect, de Broglie waves,		students
	Waves	Wave function, de Broglie Wave Velocity, Wave	passed
		and Group velocities, G. P. Thomson experiment,	
		The Uncertainty principle and its applications	
II	Schrödinger's	Introduction, Schrödinger's Equation: Time	Majority
	Equation	dependent form, Probability current, Expectation	students
		Values, Operators, Schrödinger's Equation: Steady-	passed
		state form, Eigen values and Eigen functions,	
		Problems	
III	Applications of	Introduction, The particle in a box: energy	Majority
	Quantum	quantization, The particle in a box: wave functions,	students
	Mechanics	The particle in a box: Momentum Quantization, The	passed
		Harmonic Oscillator, The Harmonic Oscillator-	
		Energy level, The particle in a three dimensional	
		box	
IV	Quantum	Schrödinger's equation for the Hydrogen Atom in	Majority
	Theory of	spherical polar co- ordinates, separation of	students
	Hydrogen Atom	Variables, Quantum numbers –Total quantum	passed
		number, Orbital quantum number, Magnetic	
		quantum number, spin quantum number	

Specify Course outcome: All students acquired fundamental knowledge and are ready to acquire advance knowledge necessary for research skill development

Signature of Teacher

Name Of the Teacher :Dr Chawhan A G

Academic Year 2020-21

Program: B.Sc.

Class Third Year Sem V Subject: Physics

Course Code : DSEP I (SecB) Paper XIIIA Paper Title : Solid State Physics

Unit No	Unit Name	Topics	Unit wise outcome
I	Crystal Structure	Introduction, Crystal Lattices and Translation vectors, Unit cell, Basis, Symmetry operations, Point groups, space group, Types of lattices, Simple crystal structure (HCP, FCC, BCC, SC), Structure of Diamond, NaCl, Problems.	Knowledge about Crystal Lattices & Translation vectors, Unit Cell, Basis. Different types of Symmetry Operations, Method of calculations Packing fraction of SC, BCC, FCC, HCP crystal Structure.
Π	Bonding in Solids and X-Ray Diffraction	Inter atomic forces and types of bonding, ionic bond, covalent bond, metallic bond, hydrogen bond, Vander-waal's bond. X- ray diffraction, Bragg's law, Laue's method, Rotating crystal method	Knowledge about Crystal Lattices & Translation vectors, Unit Cell, Basis. Different types of Symmetry Operations, Method of calculations Packing fraction of SC, BCC, FCC, HCP crystal Structure.
III	Thermal Properties of Solids	Specific heat of gases, Specific heat of solids, Classical theory of Lattice heat Capacity, Einstein's theory of heat Capacity, Debye's theory of specific heat of solids, Limitations of Debye model	Calculations of Specific heat of Monoatomic, Diatomic & Triatomic Gases. Derivations of Total Energy & Specific heat by using Classical theory. Failure of Classical theory , Derivations of Total Energy & Specific heat by using Einstein's theory & behaviour of specific heat at high & Low temperature. Failure of Einstein's theory ,Derivations of Total Energy & Specific heat by using Debye's theory & behaviour of specific heat at high & Low temperature

IV	Free	The outstanding properties of metals,	Explain Drude-Lorentz
	Electron	Drude-Lorentz theory, Thermal	theory, Derivation of
	Theory of	conductivity, Electrical conductivity,	Thermal & Electrical
	Metals	Widemann- Franz relation, Somerfield	conductivity and
		Model, Electrical conductivity and Ohms	Wiedeman-Franz
		law, Electronic specific heat, Thermoionic	Relation.
		emission, escape of electrons from metal.	Detailed analysis of
			Sommerfeld's theory,
			Calculation of Electronic
			Specific heat, Theory of
			Thermionic Emission &
			Escape of electrons from
			metals

Specify Course outcome: After completion of this course students will be able to

- 1. Understanding of crystal systems.
- 2. Understand of various types bonds existing in solid.
- 3. Understand various theories related to calculation of Specific heat of Solids.
- 4. Understand concepts of Thermal & Electrical conductivity, Ohm's law, Thermionic Emission
- & Escape of electrons from metals

Specify Program outcome

The course provides fundamental knowledge of Crystallography, principles behind the formation of matter their structure & physical properties. The course also enables the students to understand the relationship between the internal structure & various properties of matter like periodicity, structure & bonding in solids. At the end of this course, student will be able to classify the materials in different classes based on their physical, thermal, electrical & magnetic properties.

Signature of Teacher

Dr Chawhan A G

Name Of the Teacher : **Dr Kanse K S**

Academic Year 2020-21

Program: B.Sc.

Class : Third Year Sem VI Subject: Physics

Course Code: DSEPII (SecA) Paper XIV Physics : Paper Title : Atomic , Molecular and Nuclear

Unit No	Unit Name	Topics	Unit wise outcome
I	Atomic Physics	The Vector Atom Model, Quantum numbers associated with the vector atom model, LS and J-J coupling, The Pauli's exclusion Principle, Selection rules, Intensity rules, Interval rule, Normal Zeeman effect, Anomalous Zeeman effect, Stark effect.	Will be able to understand various properties of atomic physics
П	Molecular Spectra	Regions of Electromagnetic Spectra, Classification of Molecular Spectra, Theory of pure rotational spectra, Theory of rotation-vibration spectra, Raman Effect, Experimental study,	Will be able to study and analyze various properties of molecular spectra.
III	Nuclear Fission and Nuclear Reactions	Nuclear Fission, the fission products, energy release in fission, nuclear transmutation reactions, Conservation laws, Nuclear reaction kinematics	Will be able to understand nuclear fission and allied properties.
IV	Nuclear Fusion and its applications		Will be able to understand nuclear fission and allied properties.

Specify Course outcome After completion of this course the students will be able to

- 1) Understand various properties of atomic physics
- 2) Study and analyze various types of molecular spectra
- 3) Understand nuclear fission and allied properties
- 4) Apply principle of nuclear fusion to various thermonuclear process

Signature of Teacher

Dr Kanse K S

Name Of the Teacher : Dr Chawhan A G Academic Year 2020-21

Program: B.Sc.

Class Third Year Sem VI Subject: Physics

Unit No	Unit Name	Topics	Unit wise outcome
I	Number Systems	Number System:- Decimal numbers, Binary numbers, Binary arithmetic, Ones complement representation, Twos complement representation, Octal Numbers, Hexadecimal numbers, Inter-conversions of number systems, Binary coded decimal (BCD), Gray code, Excess-3 code.	Explain Binary numbers, & Binary Arithmetic, One's & Two's complement representation. Explain Octal & Hexadecimal number system. Inter conversion of from one number system to other number system , BCD numbers system, Obtain Gray & Excess codes of given binary numbers
II	Logic Gates	AND gate, OR gate, NOT gate, NAND gate, NOR gate, EX-OR and EX-NOR gates, Universal properties of NAND and NOR gates. Boolean operations, logic expressions for 2,3 & 4 inputs, laws of Boolean algebra, De -Morgen's theorems, SOP form of Boolean expressions, simplification of Boolean expressions using K- maps (up to 4 variables),Half adder, Full adder	Study of Logic gates like AND ,OR ,NOT ,NAND, NOR , EX-OR & EX-NOR with truth tables & logic symbols. Study of Boolean algebra, De- Morgan's theorem. Deriving logic expressions for 2,3 & 4 inputs. Study of SOP form of Boolean expressions using K-maps (upto 4 variables), Half & full Adder
III	Modulation and Demodulation	Introduction, Types of Modulation, Expression for A. M. voltage, AM waves, Frequency spectrum of AM wave, Power Output in AM, Expression for frequency modulated voltage, Principle of demodulation, linear diode AM detector or demodulator.	Study different types of Modulation. Derive expression for AM wave & power relations of AM wave. Derive expression for FM wave. Study of general principles of demodulation and working of Linear diode detector.
IV	Communication Electronics	Introduction, Block diagram of basic communication	Study of Basic communication system by means of block

Course Code : DSEP II (Sec B) Paper XVA Paper Title : Digital and Communication Electronics

system, Essential elements of	diagram.
A.M. Transmitter. A.M.	0
	receivers & working of Tuned
Frequency (TRF) Receiver,	6
Super heterodyne receiver,	Superheterodyne receiver with
Characteristics of radio	the help of block diagram.
receivers: sensitivity,	Study of Characteristics of
selectivity, fidelity & their	Radio Receivers like
measurements.	Sensitivity, Selectivity fidelity
	& their measurements

Specify Course outcome: After completion of this course students will be able to

- 1. Understanding of various number systems and their inter conversion.
- 2. Understand working of various types of Logic gates & the simplification of logic expression.
- 3. Understand working of AM & FM communication system.
- 4. Understand working of AM radio receivers.

Specify Program outcome

The course enables the students to understand the importance of inter convertibility of various number systems, principles of various digital gates and working of various communication systems. After completing this course students will be in a position to know the working of AM & FM communication systems i.e. modulators, demodulators, transmitters & receivers

Signiture of Teacher

Dr Chawhan A G