2018-2019
Dharmabad Shikshan Sanstha's
Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809
Pro-forma for program and course outcomes (2.6.1)

| Name of Teacher: Mr. K. B. Gacche | Department: Mathematics |  |
| :--- | :---: | ---: |
| Program: BSc FY Sem-I | Subject: Mathematics | Course Code: CCMI Section A |
| Paper Title: Calculus-I (Differential Calculus) | Paper No.: I |  |


| Unit No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :---: | :---: | :---: |
| 1 | Differentiation | Revision: Relation, Functions, Limit, Continuity, Differentiation, Derivatives of some standard functions, Some rules of Differentiation. Hyperbolic functions, Higher order derivatives, nth order derivatives, Leibnitz theorem, Equation of tangent and normal, Angle of intersection of two curves, Length of tangent, normal, sub tangent and subnormal at any point of a curve. | Student will be able <br> To understand conceptof limit, continuity, derivative of std functions, Student can find the higher order derivatives of product of functions. |
| 2 | Expansion of functions | Rolle's theorem, Lagrange's mean value theorem, Meaning of sign <br> of derivative, Cauchy's mean value theorem, Generalized mean value theorems (Taylor's theorem, Maclaurin's theorem), Expansions of some functions. Indeterminate forms: $0 / 0, \infty / \infty, 0 . \infty, \infty-\infty, 00,1 \infty, \infty 0$.. | Student can expand functions in terms of infinite series. <br> Student can find limits using indeterminate forms and are able to solve examples based on this.. |
| 3 | Partial <br> Differentiations |  <br> Continuity, Partial derivatives, Geometrical Interpretation, Homogeneous functions, Theorems on total differentials, Equality of $f x y(a, b) \& f y(a, b)$, <br> Equality of fxy \& fyx, Taylors theorem for functions of two variables | Student understands concept of limit, continuity and differentiation of two variable functions. <br> Student can use the results to solve examples. |

Course Outcome:Student learned elementary knowledge of differential calculus such as define terms, explain concepts and methods and applies to solve examples.
Program Outcome: Students learned elementary knowledge of Calculus ( Differential\& Integral ).They also learned Differentiation, expansions of functions,mean value theorems, partial differentiation.Student learned interactive computation, Plotting of Graphs using MATLAB Software.

## Signature of Teacher :

Dharmabad Shikshan Sanstha's
Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809
Pro-forma for program and course outcomes (2.6.1)

| Name of Teacher: Mr. K. B. Gacche | Department: Mathematics |
| :--- | ---: |
| Program: BSc FY Sem-I $\quad$ Subject: Mathematics Course Code: CCM-1 Section B |  |
| Paper Title: Algebra and Trigonometry | Paper No.: II |


| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | Matrices | Matrix, Different Types of Matrices, Equality of <br> Matrices, Addition (Sum) of Two Matrices, <br> Multiplication ofTwo Matrices, Properties of <br> Matrix Multiplication, Positive Integral Powers of <br> a Matrix, <br> Transpose of a Matrix, Conjugate of a Matrix, <br> Transposed Conjugate of a Matrix, Determinant of <br> a Square Matrix, Minor of an Element, Inverse of a <br> Square Matrix, Singular and Non-singular Matrix, <br> OrthogonalMatrices, The Determinant of an <br> Orthogonal Matrix, Unitary Matrix. | Student can Add, Subtract <br> and Multiply two <br> matrices. <br> Student recognizes the <br> different types of <br> Matrices. <br> Student will be able to <br> find the Inverse of <br> invertible Matrices,Minor <br> of element. |
| $\mathbf{2}$ | Rank of a <br> Matrix | Rank of a Matrix and Linear Equations : Minor of <br> Order k of a Matrix, Rank of a Matrix, Elementary <br> Row and Column Operations, Elementary <br> Operations, The Inverse of an Elementary <br> Operation, Row and Column Equivalent, <br> Equivalent Matrices, Working Procedure for <br> Finding Rank Using Elementary Operations, <br> RowEchelon Matrix, Row Rank and Column Rank <br> of a Matrix, Linear Equations, Equivalent Systems, <br> System of Homogeneous Equations. <br> Characteristic Roots and Characteristic Vectors: <br> Definitions, To Find Characteristic Vectors, <br> Cayley-Hamilton Theorem (Statement only) | Student will be able to <br> determine the row <br> rank,rank of a matrix. <br> Student can transform <br> matrix to Row Echelon <br> form. <br> Solve the examples based <br> on this. |
| $\mathbf{3}$ | Trigonometry | Complex Quantities, DeMoivre's Theorem, <br> Expansions of sines and cosines; Expansions <br> of the sine and cosine of an Angle in Series of <br> Ascending Powers of the Angle, Expansionsof the <br> sines and cosines of Multiple Angles, and of <br> Powers of sines and cosines, Exponential Series for <br> Complex Quantities, Circular Functions for <br> Complex Angles, HyperbolicFunctions, Inverse <br> Circular Functions, Inverse Hyperbolic Functions. | Student can expand sines <br> and cosines of an angle in <br> Series of Ascending <br> Powers of the Angle. <br> Student can find <br> expansions of the sines <br> and cosines of Multiple <br> Angles. Knows about <br> Hyperbolic functions. |

Course Outcome: Student got elementary knowledge ofMatrices, Complex Numbers, and
Trigonometry such as obtaining inverse, solving simultaneous equations, evaluating expansions of sines and cosine series.
Program Outcome: Students learned elementary knowledge of Calculus ( Differential\& Integral ).
They also learned Matrix operations, trigonometry and three dimensional geometry. Student learned interactive computation, Plotting of Graphs using MATLAB Software.

Dharmabad Shikshan Sanstha's
Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809
Pro-forma for program and course outcomes (2.6.1)

| Name of Teacher: Mr. K. B. Gacche | Department: Mathematics |
| :--- | ---: |
| Program: BSc FY Sem-II $\quad$ Subject: Mathematics Course Code: CCM-2 Section A |  |
| Paper Title: Calculus-II (Integral Calculus) | Paper No.: III |


| $\begin{array}{c}\text { Unit } \\ \text { No. }\end{array}$ | Unit Name | Topics | Unit-wise Outcome |
| :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | $\begin{array}{l}\text { Integration of } \\ \text { Algebraic } \\ \text { Rational } \\ \text { Functions }\end{array}$ | $\begin{array}{l}\text { Integration, Definition, Standard Forms, } \\ \text { Methods of Integration, Integral of product of two } \\ \text { functions, Reduction formulae, Integral of rational } \\ \text { fractions, Partial fractions, Non-repeated linear } \\ \text { factors, Repeated factors, Integration of Irrational } \\ \text { Algebraic fractions, A rational function of a root } \\ \text { of a lineare expression and x, Integration of xm(a+ } \\ \text { bn)p, Reduction formulae . }\end{array}$ | $\begin{array}{l}\text { Can understand concept } \\ \text { of integration of } \\ \text { algebraic rational } \\ \text { functions. } \\ \text { Student's are able to apply } \\ \text { method of integration to } \\ \text { find the integral of } \\ \text { function. }\end{array}$ |
| $\mathbf{2}$ | $\begin{array}{l}\text { Integration of } \\ \text { Transcendental } \\ \text { Functions }\end{array}$ | $\begin{array}{l}\text { Integration of sinmx, cosnx, reduction formulae } \\ \text { for sinn xdx } \square, \text { reduction } \\ \text { formulae for } \\ \text { sin cos m } \mathrm{n} x \text { xdx } \square, \text { Integration of tannx and } \\ \text { cotnx, Integration of secnx and cosecnx, } \\ \text { Integration of xnsinmx or xncosmx, Definite } \\ \text { Integrals : Definitions, General properties of the } \\ \text { definite integrals, The integral as the limit of a } \\ \text { sum, Areas }\end{array}$ | $\begin{array}{l}\text { Student Solve examples of } \\ \text { definite integrals using } \\ \text { Properties of definite } \\ \text { integrals. } \\ \text { Student obtains the area } \\ \text { and volume of given } \\ \text { curves. }\end{array}$ |
| $\mathbf{3}$ | Areas of curves | $\begin{array}{l}\text { Areas of curve given by Cartesian equations, } \\ \text { Areas of curves given by polar equations. Multiple }\end{array}$ | $\begin{array}{l}\text { Student Solve examples of } \\ \text { double } \\ \text { integration,understands the } \\ \text { concept of gamma }\end{array}$ |
| function,beta function and |  |  |  |
| are able to solve the |  |  |  |
| problems based on this. |  |  |  |$\}$| Integrals : Double integrals, Evaluation of double |
| :--- |
| integrals, Area by double integration, Volume |
| under a surface, Triple integrals, Gamma function, |
| Definition, An important property, Product of two |
| single integrals, Value of $\Gamma(1 / 2)$, Integral of |
| sin2m-1x cos2n-1x, Beta function, Dirichlet's |
| integral. |$\quad$|  |
| :--- |

Course Outcome: Student apply methods to find Integration of Algebraic Rational \& Irrational Functions, Transcendental Functions for solving examples. Students also analyze Gamma and Beta Functions, Multiple Integral and Apply integration to find Area and Volume.

Program Outcome: Students learned elementary knowledge of Calculus ( Differential\& Integral ).They also learned Matrix operations, trigonometry and three dimensional geometry. Student learned interactive computation, Plotting of Graphs using MATLAB Software.

## Signature of Teacher :

Dharmabad Shikshan Sanstha's
Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809
ro-forma for program and course outcomes (2.6.1)

| Name of Teacher: K. B. Gacche | Department: Mathematics |
| :--- | :--- |
| Program: BSc FY Sem-II | Subject: Mathematics Course Code: CCM-2 Section B |
| Paper Title: Geometry | Paper No.: IV |


| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :---: | :---: | :---: |
| 1 | Co-ordinates and <br> Transformation of Co-ordinates | Co-ordinates : Direction cosines of a line, a useful relation, relation between direction cosines, Projection on a straight line, projection of a point on a line, projection of a segment on another line, projection of a broken line, projection of the join of two lines. angle between two lines. <br> The Plane: Theorem, converse of the preceding theorem, Transformation to the normal form, direction cosines of the normal to a plane, angle between two planes, determination of plane under given conditions, intercept form of the equation of a plane, plane through three points, system of planes, two sides of a plane, length of perpendicular from a point to a plane, bisectors of angle between two planes. | Student understands concepts of Three Dimensional Geometry. Student can find the Direction cosines of any line under the different given conditions .Also find angle between two lines. Student's are able to find equations of Planes. <br> Student transforms the equation of a plane to the normal form,find the bisectors of angle between two planes. |
| 2 | Right line | Right line : Representation of line, equation of line through a given point drawn in a given direction, equation of a line through two points, two forms of the equation of line, Transformation from the unsymmetrical to the symmetrical form, angle between a line and a plane, condition for a line to lie in a plane, coplanar lines, condition for coplanarity of lines, Number of arbitrary constants in the equation of straight line, determination of lines satisfying given conditions, the shortest distance between two lines, length of the perpendicular from a point to a line. Transformation of Co-ordinates: Introduction, change of origin, change of the direction of a axes, relation between direction cosines of three mutual perpendicular lines. | Student finds equations of straight lines. <br> Student transforms equation of line from the unsymmetrical to the symmetrical form, finds shortest distance, length of perpendicular from a point to a line. |
| 3 | Sphere, Cones and Cylinders | General equation of a sphere, The sphere through fourgiven points, plane section of a sphere, intersection of two spheres, sphere with agiven diameter, equation of a circle, equation of a tangent plane, planeof contact, angleof intersection of two spheres. <br> Cones, cylinders: Definition, equation of a cone, the right circularcone, definition, the cylinder, equation of a cylinder, the right circular cylinder. | Student can find equations of Spheres, Cones and Cylinders. <br> Student's are able to find the angle of intersection of two spheres. |

Course Outcome: Student understands concepts on Three Dimensional Geometry. Student applies methods to solve examples on obtaining equations of plane, right line, cylinder, cone and sphere.
Program Outcome: Students learned elementary knowledge of Calculus (Differential\& Integral).
They also learned Matrix operations, trigonometry and three dimensional geometry.Student learned interactive computation, Plotting of Graphs using MATLAB Software.

## Signature of Teacher :

Dharmabad Shikshan Sanstha's
Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809
Pro-forma for program and course outcomes (2.6.1)

| Name of Teacher: Mr.K. B. Gacche | Department: Mathematics |
| :--- | ---: |
| Program: BSc FY Sem- I \&II Subject: Mathematics | Course Code: CCMP-1 |
| Paper Title: Practical | Paper No.: V |


| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :---: | :---: | :---: |
| 1 | Introduction to MATLAB | MATLAB Programming language, Built-in Functions, Graphics, computations, External interface and Tool boxes. Basics of MATLAB, MATLAB windows, desktop, command window, workspace, Figure and Editor Windows, Inputoutput, File types, platform dependence, Printing. Programming in MATLAB: Scripts and14 functions. Script files, function files, Executing of function, writing good functions, sub functions, compiled functions. | Student learns basics of MATLAB language. <br> Student learns various MATLAB commands. |
| 2 | Interactive computation : | Matrices and Vectors, input, indexing, matrix manipulation, creating vectors. Matrix and Array operations, Arithmetic operations, Relational operations, logical operations, Elementary math functions, matrix functions, character string. Command-line Functions, Inline functions, Anonymous functions. Built-in functions, finding the determinant of matrix, finding Eigen-values and eigenvectors. Saving and loading Data, Importing data tales, recording a session. Applications: - Linear Algebra. Solving a linear system, Gaussian elimination, Finding Eigen values and eigenvectors, matrix factorization, advanced topics. | Student associativity of addition, left distributrive law and right distributive |
| 3 | Plotting of Graphs | Plotting simple Graphs. Graphics: - Plotting of 2D graphs, Using subplot for multiple graphs, 3DPlots (Drawing of different Geometrical objects), saving and Printing. | Student plots the graph of different functions with the help of MATLAB software. <br> Student draws 3D objects using MATLAB software. |

Course Outcome: Student studied MATLAB software and its application to solve problems in matrices and to plot the graphs of different functions.

Program Outcome: Students learned elementary knowledge of Calculus (Differential\& Integral).
They also learned Matrix operations, trigonometry and three dimensional geometry. Student learned interactive computation, Plotting of Graphs using MATLAB Software.

## Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809

## Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: K. B. Gacche
Department: Mathematics
Program: BSc SY Sem-III Subject: Mathematics Course Code: CCM-3 Section A
Paper Title: Real Analysis-I
Paper No.: VI

| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | Sets and functions | Sets and Elements; Operations on sets, <br> Functions, real valued functions, Equivalence, <br> Real numbers, Least upper bounds. | Student understands the <br> basic concepts of sets and <br> their properties. <br> Student can find <br> supremum, infimum and <br> limit points of given sets. <br> Recognizes countable <br> and uncountable sets. |
| $\mathbf{2}$ | Sequences of real <br> numbers | Definition of sequence and subsequence, Limit <br> of a sequence, Convergent sequences, Divergent <br> sequences, Bounded sequences, Monotone <br> sequences, Cauchy sequences. | Student will be able to <br> prove convergence of <br> sequences. <br> Student uses various <br> results to check the <br> behavior of given <br> sequences. |
| $\mathbf{3}$ | Series of real <br> numbers | Convergence and divergence, Series with non- <br> negative terms, Alternative series, Conditional <br> convergence and absolute convergence, Tests <br> for absolute convergence. | Student understands the <br> concept of convergence <br> of infinite series. <br> Student uses comparison <br> tests to check the <br> behavior of given series. |

Course Outcome: Student understands conceptof open set, closed set, real sequences, subsequences, convergence of sequences, infinite series, convergence of series, comparison tests for series.

Program Outcome: Student learned elementary knowledge of real sequences, infinite series, various algebraic structures, group theory and ordinary differential equations.

## Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809

## Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: K. B. Gacche
Program: BSc SY Sem-III Subject: Mathematics Course Code: CCM-3 Section B
Paper Title: Group Theory

| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | Preliminary <br> notions | Mapping, examples of <br> mappings, the integers, group <br> theory, definition of a group, <br> some examples of groups, <br> some preliminary lemmas. | Student understands the concepts on an <br> equivalence relation. <br> Student checks whether the given set, is a <br> group for the given operation or not. |
| $\mathbf{2}$ | Cyclic groups, <br> quotient groups | Subgroups, cyclic groups, <br> cyclic subgroups, A counting <br> principle (Statement only of <br> Lemma 2.5.1, Corollary and <br> Theorem 2.5.1), Normal <br> Subgroups and Quotient <br> groups, Properties and <br> examples. | Student understands the general properties of <br> groups. Able to understand cyclic groups, <br> Student solves problems on groups. |
| $\mathbf{3}$ | Cosets and <br> Cyclic groups | Homomorphism's, Definitions, <br> Examples and Properties, <br> Cauchy's Theorem for Abelian <br> groups, Sylow's, Theorem for | Student understands the concepts of the <br> homomorphism,permutations, automorphisms <br> of groups. |

Specify Course Outcome: Student understands concept of group of permutations, cyclic permutations, subgroups, cosets, cyclic groups, normal groups, homomorphism \& automorphism. Student uses Lagrange's theorem to solve the problems in number theory.

Specify Program Outcome: Student learned elementary knowledge of real sequences, infinite series, various algebraic structures, group theory and ordinary differential equations.

## Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809

## Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. Gacche

## Department: Mathematics

Program: BSc SY Sem-III Subject: Mathematics Course Code: CCM-3 Section C Paper Title: Ordinary Differential Equations Paper No.: VIII

| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :---: | :---: | :---: |
| 1 | Preliminaries | Polynomials, Determinants, Linear Equations of the First Order Differential Equation, Linear Equation of the First Order, The Equation y $4+$ $a y=0$, the equation $y \phi+a y=b(x)$, The general linear equations of the first order. | Student understands the basic concepts of a differential equation, order and degree. Student will be able to verify whether the given differential equation is of first order or not. |
| 2 | Linear differential equations with constant coefficients | The second order homogeneous equations, IVPs for second order homogeneous equations, Linear dependence and independence, A formula for the Wronskian, The non-homogeneous, The nonhomogeneous equations of order two. | Student understands the concept IVP,LINEAR DEPENDANCE solves the examples Wroskian formula.. |
| 3 | Linear differential equations with variable coefficients | IVPs for homogeneous equation, Solution of the homogeneous equation, The Wronskain and linear independence.corresponding to a term of the form $\mathrm{x}^{\mathrm{m}}$ in the second member. | Student can find integral corresponding to a term of the form $\mathrm{e}^{\mathrm{ax}}, \mathrm{x}^{\mathrm{m}}, \sin \mathrm{ax}$ in the second member. Student can find the solution of linear equations with variable coefficients. |

Course Outcome: Student learns elementary knowledge of ordinary differential equations. Student can solve problems on ordinary differential equations.
Program Outcome: Student learned elementary knowledge of real sequences, infinite series, various algebraic structures, group theory and ordinary differential equations.

Signature of Teacher :

## Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809

## Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: K. B. Gacche<br>Department: Mathematics<br>Program: BSc SY Sem-IV Subject: Mathematics Course Code: CCM-4 Section A<br>Paper Title: Real Analysis-II<br>Paper No.: IX

$\left.$| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | Riemann Integral | Definitions and Existence of the integral, <br> Refinement of partitions; Darboux's theorem, <br> Conditions of integrability, Intergrability of the <br> sum and difference of Integrable functions, The <br> integral as a limit of sums (Riemann <br> Sums).Some Integrable Functions | Student understands <br> difference between upper <br> sum \& lower sum. <br> Student understands the <br> concept of upper integral <br> \& lower integral. |
| $\mathbf{2}$ | Improper <br> Integral-Range of | Integration and Differentiations, Fundamental <br> Theorem of Calculus, Mean value Theorem. <br> Integration is <br> Finite | Introduction, Integration of unbounded functions <br> with Finite Limits of Integration, Comparison <br> Test, <br> for Convergence at a of Absolute Convergence | | Student understands the |
| :--- |
| concept of Riemann sum |
| and Riemann integral. |
| Student solves problems |
| on Riemann integral |
| Student distinguishes |
| between convergence and |
| absolute convergence of |
| improper integral. | \right\rvert\,

Course Outcome: Student understands concept and learns elementary knowledge of Riemann integral and improper integral. Student will be able to test the convergence using comparison and general tests.

Program Outcome: Student understands concept of Riemann integral, improper integral, ring theory and partial differential equations.

## Signature of Teacher :

## Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809

## Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr.K. B. Gacche
Department: Mathematics
Program: BSc SY Sem-IV Subject: Mathematics Course Code: CCM-4 Section B
Paper Title: Ring Theory
Paper No.: X

| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | Definition, <br>  <br> Elementary <br> properties of a <br> ring | Ring, Definition and examples of rings, some <br> special classes of Rings, Homomorphisms, <br> Isomorphism | Student checks whether <br> given algebraic structure <br> is a Ring or not. <br> Student learns <br> elementary properties of <br> a ring. |
| $\mathbf{2}$ | Isomorphism of <br> rings, Ideals | Ideals and Quotient Rings, More Ideals and <br> Quotients rings, The field of quotients of an <br> integral domains. Euclidean Rings | Student understands the <br> concept of ideal and <br> principal ideal of a ring. |
| $\mathbf{3}$ | Polynomial rings, <br> polynomial over <br> an integral <br> domain and <br> Euclident checks whether <br> given two rings are <br> algorithm | A particular Euclidean Ring, Polynomial Rings, <br> Polynomial over the Rational field, Polynomial <br> Rings over commutative Rings | Student understands the <br> difference between units <br> and associates. <br> Student solves problems <br> on polynomial rings. |

Course Outcome: Student understands concept of rings, isomorphism \& homomorphism of rings, ideals and principal ideals, polynomial rings and Euclidean rings.

Program Outcome: Student understands concept of Riemann integral, improper integral, ring theory and partial differential equations.

Signature of Teacher :

# Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809 

## Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. Gacche
Department: Mathematics
Program: BSc SY Sem-IV Subject: Mathematics Course Code: CCM-4 Section C Paper Title: Partial Differential Equations Paper No.: XI

| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | Partial differential <br> equation- basic <br> concepts, <br> Lagrange's linear <br> equations | Partial differential equations, order, method of <br> forming partial differential equations, solution of <br> equations by direct integration, Lagrange's linear <br> equation, working rule, method of multipliers. | Student can classify PDE. <br> Student uses methods to <br> solve problems on PDE. <br> Student finds solution of <br> PDE by direct <br> integration. |
| $\mathbf{2}$ | Charpit's method, <br> Linear <br> homogeneous <br> PDE | Partial differential equations nonlinear in p and <br> q, Charpit's method, linear homogeneous partial <br> differential equations of nth order with constant <br> coefficients, rules for finding the complementary <br> function, rules for finding the particular integral, <br> nonlinear homogeneous, linear equations, <br> Monge's method. | Student solves linear <br> PDE of first and second <br> order. <br> Student uses Charpit's <br> method for solving <br> PDE,finds <br> complementary <br> functions, particular <br> integral. |
| $\mathbf{3}$ | One-dimensional <br>  <br> two-dimensional <br> heat flow, Laplace <br> equations | Introduction, method of separation of variables, <br> equation of vibrating string, solution of wave <br> equation by D' Alembert's method, one <br> dimensional heat flow, two dimensional heat <br> flow, Laplace equation in polar coordinates, <br> transmission line equations. | Student understands <br> concept of non- <br> homogeneous linear <br> equations. |
| Student solves the wave |  |  |  |
| equation by D'Almbert's |  |  |  |$|$| method. Student applies |
| :--- |
| PDE techniques to |
| predict the behaviour of |
| certain phenomena. |
| Student solves problems |
| using boundary |
| conditions. |

Course Outcome: Student understands concept of Partial differential equations. Student learns different methods of finding solutions of PDE and are introduced to real-world problems like wave equation, heat equation, etc.

Program Outcome: Student understands concept of Riemann integral, improper integral, ring theory and partial differential equations.

## Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809

## Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr.K.B. Gacche
Department: Mathematics
Program: BSc TY Sem-V Subject: Mathematics Course Code: MT301
Paper Title: Metric Spaces
Paper No.: XIII

| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :--- | :--- | :--- |
| $\mathbf{1}$ | Open and Closed <br> sets | Definitions and examples, open and closed sets. | Student understands <br>  <br> closed sets. <br> Student can define <br> subspace, closure of a set. |
| $\mathbf{2}$ | Convergence, <br> Completeness, <br> Continuity and <br> Uniform <br> Continuity | Convergence and completeness, Continuity <br> and uniform continuity | Student can verify the <br> convergence of <br> sequences. <br> Student understands <br> concepts of continuity <br> and uniform continuity. |
| $\mathbf{3}$ | Compactness | Compactness, Connectedness. | Student understands <br> concept of compactness. <br> Student can verify <br> compactness of given <br> metric spaces. Student |
| understands concept of |  |  |  |
| connectedness. |  |  |  |
| Student can verify |  |  |  |
| connectedness of given |  |  |  |
| metric spaces. |  |  |  |

Course Outcome: Student understands concept of open and closed sets. Student verifies the convergence of sequences, completeness compactness and connectedness of given metric spaces.

Program Outcome: Student understands concept of metric spaces, vector spaces and equilibrium of forces \& resultant force of forces.

Signature of Teacher :

## Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809

## Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr.K. B. Gacche
Department: Mathematics
Program: BSc TY Sem-V Subject: Mathematics Course Code: MT302
Paper Title: Linear Algebra
Paper No.: XIV

| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :---: | :---: | :---: |
| 1 | Vector spaces | Vector spaces: Elementary basic concepts of vector spaces, Linear independence and bases, Dual spaces. | Student can define vector space, dual space. <br> Student will be able to apply methods to solve examples. |
| 2 | Inner product spaces | Inner product spaces, Fields: Extension fields (definitions only) | Student understands concepts of basis, and kernel.inner product space. |
| 3 | Linear <br> Transformations.Matrices | Linear transformation: The algebra of linear transformations, Characteristic roots, Matrices. | Student understands concepts of inverse of a linear transformation. Student recognizes composition of linear maps. Student can associate a matrix with a linear map. <br> Student will be able to find Eigen values and Eigen vectors. |

Course Outcome: Students will be able to find dimensions of various vector spaces and by using determinant concept students can solve the linear equations in two, three unknowns.
Program Outcome: Student understands concepts of metric spaces, vector spaces and equilibrium of forces \& resultant force of forces.

Signature of Teacher :

## Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809

## Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. Gacche

## Department: Mathematics

Program: BSc TY Sem-V Subject: Mathematics Course Code: MT303B
Paper Title: Mechanics-I (Statics)
Paper No.: XV(B)

| Unit No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :---: | :---: | :---: |
| 1 | Forces Acting on a Particle | Definitions, Law of parallelogram of forces, Determination of magnitude and direction, Resultant of forces, Components and resolved parts,The Algebric Sum of the resolved parts of two forces, To find magnitude and direction, Resultant of parallel forces. | Student can describe Law of Parallelogram of Forces. <br> Student will be able to define components and resolved parts, finds magnitude and direction of the resultant of forces. |
| 2 | Equilibrium of Forces Acting on a Particle | Triangle Law of forces, Converse of triangle law of forces, Polygon of forces Lami's Theorem, Conditions of equilibrium of forces acting on a particle.. | Student understands concept of resultant of Parallel Forces. Student will be able to explain Triangle law of Forces. |
| 3 | Forces Acting on a Rigid Body | Introduction, Moment of force, The sum of vector moment of a system of forces, The Sum of the vector moments of two like parallel forces acting on a rigid body, Couples, Two couples acting in one plane upon a rigid body, Equivalent couples, The vector of the resultant couple of two couples, A System of forces acting upon a rigid body, Conditions of equilibrium of forces acting on a rigid body and Cartesian form, Conditions of equilibrium of coplanar forces acting on a rigid body. | Student understands concept of equilibrium of Forces. <br> Student evaluates examples on Vector Moment of the Resultant Couple of two Couples acting upon a Rigid Body. Student understands concept of equivalent couples, vector moment. <br> Student will be able to state Conditions of Equilibrium of Forces |

Course Outcome: Students learns basic, primary knowledge of motion, force and their relations.
Studentunderstands the force systems, the concept of motion of particles and rigid bodies.
Program Outcome: Student understands concepts of metric spaces, vector spaces andequilibrium of forces \& resultant force of forces.

# Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809 

## Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. Gacche

## Department: Mathematics

Program: BSc TY Sem-VI Subject: Mathematics Course Code: 304
Paper Title: Numerical Analysis
Paper No.: XVI

| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :---: | :---: | :---: |
| 1 | Differences, Operators, Interpolation with equal intervals | Introduction, Differences, Theorem, Factorial notation, The operator E, Properties of E and, $\Delta$, the operators $D$ and $\nabla$, Interpolation, Extrapolation, Interpolation with equal intervals, Newton- Gregory formula for forward and backward interpolation, Equidistant terms with one or more missing terms. Interpolation for unequal intervals of the arguments, Divided differences with unequal intervals, Divided differences, When two or more arguments are same, Properties of divided differences (Theorems 1,2 only) | Student understands concept of various operators, Learns forward and backward formulae and sove examples based on it. |
| 2 | Unequal intervals,Central Differences | Properties of divided differences(Theorems 3, 4 only), Newton's, Formula for unequal intervals, Lagrange's, Formula for unequal intervals, Central differences $\quad(,,, \delta \sigma \mu \nabla)$, Interpolation formulae: Gauss, Bessel and Stirling's.. | Student s are able to recognize formulae for unequal intervals and for central differences and can solve examples based on it. |
| 3 | Numerical differentiation and quadrature | Numerical differentiation, Introduction, Approximate Expressions for the derivative of a function, Unsymmetrical expressions for third order derivative, Numerical quadrature, Introduction, General quadrature formula, Trapezoidal, Simpson's one-third and three-eight rules. Weddle's rule. Numerical solution of O.D.E., Introduction, equation of first order, Euler"s method, Euler"s modified method, Picard's method, Talyor series method. | Student can find the derivatives and integration using the learnsd formulae. |

Course Outcome: Student can find the missing terms in the given data using numerical techniques. Student can apply numerical derivation and numerical integration methods for solving problems. Student can find the solutions of ordinary differential equations.

## Signature of Teacher :

## Dharmabad Shikshan Sanstha's Lal Bahadur Shastri Mahavidyalaya,Dharmabad-431809

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. Gacche<br>Department: Mathematics<br>Program: BSc TY Sem-VI Subject: Mathematics Course Code: MT305<br>Paper Title: Integral Transforms<br>Paper No.: XVII

| Unit <br> No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :---: | :---: | :---: |
| 1 | Laplace <br> Transformations | Introduction, Laplace Transform, Important Formulae, Properties of Laplace Transforms, Laplace Transforms of the derivative of $(t) f$, Laplace Transforms of derivative of order $n$, Laplace Transform of integral of (t)f, Laplace Transform of $(\mathrm{t}) \mathrm{t} \mathrm{f} \cdot($ Multiplication by t$)$, Laplace Transform of 1 (t)f t - (Division by t ), Unit Step Function. Second Shifting Theorem, Impulse Function, Periodic Functions, Convolution Theorem, Evaluation of integrals, Formulae of Laplace transform, Properties of Laplace Transform. | Student understands Laplace foroulae,laplace transformations , using laplace properties solve examples. |
| 2 | Inverse Laplace Transforms | Inverse Laplace Transforms, Important formulae ,Multiplication by s, Division by s, First Shifting property, Second Shifting property, Inverse Laplace transform of derivatives, Inverse Laplace Transform of Integrals, Partial fractions Method, Inverse Laplace transform by Convolution, Solution of Differential Equation by Laplace transforms, Solution of Simultaneous Differential Equations by Laplace transforms. | Student understands concept of inverse Laplace transform. Student can solve examples on inverse Laplace transforms. |
| 3 | Fourier Transforms | Introduction, Integral Transforms, Fourier Integral Theorem, Fourier sine and Cosine Integrals, Fourier Complex Integral, Fourier transforms, Fourier sine and cosine transforms, Properties of Fourier Transforms. | Student studies properties of Fourier Transforms. Student uses Fourier Integral theorem for solving problems. |

Course Outcome: Student understands the concept of Integral Transforms. Student can identify integral transforms by their integration limits and kernels. Student can apply the integral transforms for evaluating integrals.
Program Outcome: Student understands some fundamental ideas of complex analysis, integral transforms, Laplace transforms. Student also gets an elementary knowledge about Topology.

## Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Mr. K. B. Gacche

## Department: Mathematics

Program: BSc TY Sem-VI Subject: Mathematics Course Code: MT306 B
Paper Title: Mechanics-II (Dynamics)

Paper No.: XVIII(B)

| Unit No. | Unit Name | Topics | Unit-wise Outcome |
| :---: | :---: | :---: | :---: |
| 1 | Kinematics and Dynamics of a particle in two dimensions | Introduction, Definitions, Expressions for velocity and acceleration, Components of velocity and acceleration, Tangent and unit vector, Rate of change of a unit vector moving in a plane, Curvature and principal normal, Tangential and normal components of velocity and acceleration, Angular speed and angular velocity, Angular acceleration, The radial and transverses directions, Find the radial and transverse components of velocity and accelerations. | Student will be able to define velocity and acceleration,components of velocity and acceleration, differentiate between normal,tangential and normal components of velocity and acceleration, angular, solves examples depending on it. |
| 2 | Kinematics of a particle | Introduction, Newton's law of motion, Matter, Linear momentum, Impulsive force and its impulse, Unit of impulse, Conservation of linear momentum, Impact of two bodies, Work, Work done by a force, Unit of work, Power, Energy, Kinetic energy, Potential Energy Kinetic energy of particle of mass $m$ moving with velocity, Definition of scalar and vector point function, Scalar and vector field, Field of force, Conservative field of force, Potential function | Student understands concepts of Newton's laws of motion and its importance in physical sciences, analyze the impulsive force and its impulsive. |
| 3 | Motion of a projectile and motion in resisting medium | Rectilinear motion, Motion under gravity, Projectile, Range on inclined plane projectile to pass through a given point $(\mathrm{h}, \mathrm{k})$, The relation $\mathrm{t}_{1} \mathrm{t}_{2}=2 \mathrm{R} / \mathrm{g}$ | Student understands to find the motion of projectile and derivation of its trajectory, path of a projectile. |

Course Outcome: Student can understand Newtons laws of motion , understands the expressions of velocity and acceleration, motion in resisting medium
Specify Program Outcome: Student understands some fundamental ideas of complex analysis, integral transforms, Laplace transforms. Student also gets an elementary knowledge about projections of a particle.

## Signature of Teacher :

