Dharmabad Shikshan Sanstha's

LAL BAHADUR SHASTRI MAHAVIDHYALAYA, DHARMABAD

PROFORMA FOR PROGRAM AND COURSE OUT COME (2.6.1) (AY -2019-20)

Name of the Teacher	: A G Chawha	n	
Department	: Electronics		
Program	: B Sc	Class: I Year, Semester-I	Subject: Electronics
Course Code	: CCEI-A Pape	er No. I	
Paper Title	: Basic Electro	onics and Network Analysis	

Unit	Unit Name	Topics	Unit wise outcome
Number			
1	Basic Circuit Analysis	Ohm's law, KCL, KVL, Sign convention of IR drops and EMF's, Series circuits-proportional voltage formula, voltage divider, open & shorts in series circuits, Parallel Circuits- proportional current formula, , open & shorts in parallel Circuits	 List of three forms of Ohm's law, Use Ohm's law to calculate V,I & R in a circuit, Apply -proportional voltage formula, voltage divider and proportional current formula in series & parallel circuit.
			3. Describe the effect of Open & short in series & parallel circuit
2	Network Theorems	Ideal constant voltage & current source, Super position theorem Thevenin's theorem, Norton theorem, Maximum power transfer theorem	 1.Apply superposition theorem to find out voltage across two points in a circuit containing more than one voltage source 2. Determine the Thevenin's & Norton's equivalent circuits w.r.t. any pair of terminals in a

		complex circuit.
		3. Apply Thevenin's &
		Norton's theorems in
		solving for an unknown
		voltage or current.
		4. Apply Maximum power
		transfer theorem to deliver
		max. power to
		communication network.
3. Phasor	Symbolic notation,	1.Explain the operator j
Algebra	significance of operator i	2 Define a complex
	significance of operator j	number & explain the
	Conjugate complex number,	difference between the
	Various forms of vector	rectangular & polar forms
	representation,	of complex number,
	Arithmatic operation of vectors	3. Add, subtract, multiply
	Powers and roots of vector quantity	& divide complex number
	100000	4 Convert complex
		number from
		rectangular to polar,
		rectangular to exponential
		and vice versa
		5 Explain how to use
		complex numbers to solve
		series & parallel AC
		circuits containing R,L &
		C
4. AC	Types of AC waveforms, Cycle, time	1. Define the term
fundame	ntals period, frequency, amplitude	Resonance & list the
	Amplitude of AC voltage/current	characteristics of series &
	inspirade of the voltage/current	parallel resonant circuit.
	Characteristics of AC wave,	2. Explain how the
	Different values of sinusoidal	Resonant frequency
	voltage/current,	formula is derived.
	Phase of AC & phase difference.	Calculate the Q factor of
	Vector representation of an AC	series & parallel resonant

	quantity,	circuit,
	 R-L circuit, R-C circuit, R-L-C series circuit, Resonance in series R-L-C circuit, Resonance curve, Bandwidth & Q factor of series R-L-C circuit, 	3.Explain the concept of bandwidth of resonant circuit & calculate the bandwidth of series & parallel resonant circuit.
	Parallel resonance- Resonance curve, Q factor, Bandwidth & Q factor of parallel resonant circuit Transformer and its working	

- 1. Apply KCL & KVL to given circuits, determine the polarity of IR drop across the resistor to know the characteristics of series & parallel resistive circuit
- 2. Apply network theorems to simplify the given network.
- 3. Apply various forms of vector representation of AC quantity

4. Distinguish between AC and DC sources, relate various characteristics of sinusoidal voltages and understand the use of resonant circuits

Signature of teacher

Dr A G Chawhan

Department: Electronics

Program: B.Sc.

Class : First Year Sem I

Subject: Electronics

Course Code: CCE-I B Paper no. II

Paper Title: Basic Digital Electronics

Unit	Unit Name	Topics	Unit-wise Outcomes
Number			
I	Number Systems and Codes	Decimal, Binary Octal and Hexadecimal number systems, inter conversions of number systems, Binary arithmetic (addition, subtraction, multiplication, division), 1's compliment, 2's compliment, binary subtraction using 1's and 2's compliments, Codes: BCD, Gray code, Conversion of BCD to Binary, Binary to Gray code and vice versa, ASCII code.	 Understood the meaning of analogue & digital signals Inter conversions of number systems
Π	Logic Gates	Positive logic, Negative logic, Definition, symbol and truth table of NOT, OR, AND, NOR, EX-OR, EX-NOR gates. De-Morgan's theorem, Universal properties of NAND and NOR gates, bubbled OR gate, bubbled AND gate, gate propagation delay time, power dissipation.	Knowledge of various logic gates and Able to draw logic circuit for a given Boolean expression.
III	Boolean Algebra and K-Map	Boolean operations, logic expressions, rules and laws of Boolean algebra, Simplification of Boolean expression, SOP & POS form of Boolean expressions for logic network minterms, maxterms, Simplification of Boolean expression using K-map up to 4 variables for SOP.	Able to analyse, transform, minimize Boolean expression & implement it.
IV	Arithmetic Circuits	Half Adder, full adder, realization of half and full adder using gates, parallel binary adder, half and full subtractor.	Knowledge to design various arithmetic circuits.

- 1. able to distinguish between analogue & digital signal/data.
- 2. able to draw logic circuit for a given Boolean expression.
- 3. able to analyse, transform, minimize Boolean expression & implement it.

Signature of Teacher

Name of the Teacher	: A G Chawha	n	
Department	: Physics		
Program	: B Sc	Class: I Year, Semester- II	Subject: Electronics
Course Code	: CCEII-A Pap	per No. III	
Paper Title	: Semiconductor Devices and Electronic Instruments		

Unit	Unit Name	Topics	Unit wise outcome
Number			
1	Semiconductor Diodes	Construction, working & V-I characteristics of PN junction diode Effect of temperature on Barrier potential. LED , Zener diode, Photo diode & Varactor diode	Explain the basic construction of a diode, draw the schematic symbol of diode & identify anode & cathode, describe how to forward & reverse bias a diode List the Construction, working & V-I characteristics of LED, Zener diode, Photo diode & Varactor diode
2	Transistors	Construction & working of NPN & PNP transistor, F-F,R-R & F-R biasing, α_{dc} & β_{dc} of transistor & their relationship, CE transistor characteristics: Collector & base curves Construction, working & V-I characteristics of UJT, FET and MOSFET	List the three doped regions of transistor and explain the roe of each doped regions of transistor, identify the schematic symbol of npn & pnp transistor Define α_{dc} & β_{dc} of transistor & relationship between them

			DescribetheconstructionofJFET, explain hoe aninputvoltagecontrolstheoutputcurrentinJFETworking& V-IcharacteristicsofFET
3.	Rectifiers & Voltage Regulators	Block diagram of power supply, Half, full & Bridge rectifier, shunt capacitor filter Load & Line regulation, Zener shunt regulator	Explain the working of power supply. Theoretical & Mathematical explanation of HWR, FWR & Bridge rectifier. Working of shunt capacitor filter, Explain the concept of Load & Line regulation, How does Zener shunt regulator work.
4.	Multimeter &CRO	Multimeter: applications of multimeter, sensitivity of Galvanometer, Conversion of Galvanometer into voltmeter & ammeter CRO: CRT, deflection sensitivity of CRT, Applying signal across vertical plates, display signal waveforms on CRO, Signal pattern on screen, various controls of CRO, Applications of CRO	Explaintheconstruction&working of movingcoil meter.Calculate the valueof shunt& seriesresistance required toextend the current &voltage range of abasic moving coilmeterExplaintheconstruction&working of CRTWorking of various

	controls of CRO
	Measurement of
	Amplitude,
	Frequency & phase
	of alternating
	waveform.

- 1. Understand the V-I characteristics of various semiconductor diodes
- 2. Understand input & output characteristics of transistors.
- 3. Distinguish between the unregulated & regulated power supply
- 4. Use of multimeter & CRO

Signature of teacher

Dr A G Chawhan

Department: Electronics

Program: B.Sc.

Class : First Year Sem II

Subject:Electronics

Subject: Course Code: CCEII-B (Paper-IV)

Paper Title: Digital Logic Circuits

Unit	Unit Name	Topics	Unit-wise
Number			Outcomes
Ι	Data Processing Circuits	Introduction to multiplexers, designing of 2:1 MUX, 4:1 MUX, and 8:1 MUX, introduction to demultiplexers, designing of 2:1 DMUX, 4:1 DMUX, and 8:1 DMUX, Encoders: decimal to BCD encoder, priority encoder, Decoders: BCD to decimal decoder, BCD to seven segment decoder.	Able to present the use of data processing circuits like mux, demux, encoders and decoders.
П	Flip- Flops	1-bit memory cell, S-R flip-flop, clocked S-R flip-flop, preset and clear facility in flip–flop, J–K flipflop, race around condition, master- slave JK Flip Flop, D-type and T-type flip flop.	 Knowledge of various flip-flops. Able to distinguish between JK Flipflop & JKMS Flipflop; between T Flipflop & D Flipflop.
III	Sequential logic circuit	Concept of counters, types of counters, modulo of counter, 2-bit, 3-bit and 4-bit asynchronous counters, 2-bit, 3-bit and 4-bit synchronous counters, mod-5counter, decade counter using IC 7490, ring counter, shift registers: SISO, SIPO, PISO, PIPO.	Acquire the skill of using FFs for given application such as register, counter etc.
IV	Data Converters	D to A converters: R-2R Ladder DAC, characteristics of DAC, resolution, linearity, accuracy, settling time. A to D converters: parallel comparator ADC, successive approximation ADC, Characteristics of ADC: resolution, conversion time, quantization error.	Able to understand the uses of ADC & DAC.

Course Outcome : After completion of this course students will be -

- 1. able to distinguish between JK Flipflop & JKMS Flipflop, T Flipflop & D Flipflop.
- 2. acquire the skill of using FFs for given application such as register, counter etc.
- 3. able to present the use of MUX, DMUX.
- 4. able to understand the uses of ADC & DAC.

Signature of Teacher

Name of the Teacher: Dr .K S Kanse

Department: **Electronics**

Program: B.Sc.

Class : Second Year Sem III

Subject: Electronics

Course Code: CCE-III (Section A) Paper No. VI

Paper Title: Amplifiers, Oscillators & Multivibrators

Unit Number	Unit Name	Topics	Unit-wise Outcomes
Ι	Load Lines And DC Bias Circuits	DC Load line, Q-Point and Maximum Undistorted Output, Need for Biasing a Transistor, Factors Affecting Bias Variations, Stability factor, Beta Sensitivity, Stability Factor for CB and CE Circuits, Base Bias with Emitter Feedback, Base Bias with Collector Feedback, Base Bias with Collector and Emitter Feedback, Voltage Divider Bias, Load Line and output Characteristics, AC Load line,	Knowledge of transistor biasing.
Π	Small Signal Amplifiers	h-parameters, An equivalent circuit for the BJT, Transconductance Model, Analysis of CE Amplifier, CB Amplifier, CC Amplifier using h-parameters, Gain in decibels	Analysis of small signal amplifier using h- parameters & designing of CE amplifier.
III	Sine Wave Oscillators	Introduction to Positive and Negative Feedback, Requirement of an Oscillator, Barkhausen Criterion, Hartley Oscillator, Colpitt's Oscillator, R-C Network, Phase Shift Oscillator, Wien Bridge Oscillator (Circuit diagram, Working, Expression of Frequency and Condition for Oscillations	Will be able to understand the feedback in electronics.Will be able to understand working principle of various oscillators.
IV	Multivibrators And Sweep Circuits	Transistor as a Switch, Transistorized Astable Multivibrator, Transistorized Monostable Multivibrator, Transistorized Bistable Multivibrator (working & waveforms), Introduction to Sweep Circuits, Sweep Voltage Waveforms, Exponential Sweep, RC Ramp Generator	Will be able to understand working of various time base circuits.

Course Outcome : After completion of this course students will be -

- 1. Able to understand transistor biasing.
- 2. Analysis of small signal amplifier using h-parameters & designing of CE amplifier.
- 3. able to understand working principle of various oscillators.
- 4. able to understand working of various time base circuits.

Signature of Teacher

Dr K S Kanse

Department: **Electronics**

Program: B.Sc.

Class : Second Year Sem III

Subject: Electronics

Course Code: CCE-III (Section B) Paper No. VII

Paper Title: Fundamentals of Microprocessor

Unit	Unit Name	Topics	Unit-wise Outcomes
Number			
I	Architecture of 8085 Microprocessor	Block diagram of microprocessor based system, features of Intel 8085, block diagram of Intel8085, function of each block, functional pin diagram of Intel 8085 and pin description,demultiplexing of AD0–AD7 bus using latch IC 74LS373.	Knowledge of the microprocessor based systems.
Π	Instruction Set of 8085	Instruction cycle, machine cycle, T state, instruction format (1, 2, 3 byte), addressing modes, classification of instructions, instruction set of 8085.	Knowledge of Instruction set of 8085 and ALP skills.
III	Programming of 8085	Simple Assembly Language Programs (addition, subtraction, 1's complement, 2's complement, smaller no. and larger no., sum of series, block transfer), delay, delay subroutine using one register and register pair.	Apply the knowledge of instructions of Assembly Language Programming skills.
IV	Introduction To Microprocessor Intel 8086	Block Diagram of Intel 8086, Function of Each Block, Functional Pin Diagram of Intel 8086,Features of Intel 8086	Knowledge of the microprocessor 8086

Course Outcome:

1. Knowledge of microprocessor based systems.

2. Knowledge of Instruction set of 8085 and Assembly Language Programming skill.

3. Knowledge of Microprocessor 8086.

Signature of Teacher

Name of the Teacher: Dr .K S Kanse

Department: Electronics

Program: B.Sc.

Class : Second Year Sem IV

Subject: Electronics

Course Code: CCE-IV (Section A) Paper No. VIII

Paper Title: Op-Amp, It's Applications & Some specialized ICs

Unit Number	Unit Name	Topics	Unit-wise Outcomes
Ι	Operational Amplifier	Theory of Differential Amplifier, Block Diagram of Op-Amp, Schematic Symbol, Ideal Characteristics, Input Offset Voltage, Input Offset Current, Input Bias Current, Input Impedance, Output Impedance, Open Loop Gain, CMRR, Slew Rate, Numerical Problems	The sudent wil be able to understand basics of the the operational amplifier.
Π	Applications of Operational Amplifier	Inverting Amplifier, Non-inverting Amplifier, Op-Amp as Adder, Op-amp as Subtractor, OpAmp as Integrator, Op-Amp as Differentiator, Op-Amp as Comparator, Op-Amp as Schmitt's Trigger, Solving Differential Equation, Numerical Problems	The student will demonstrate knowledge of analog electrical devices ,particularly operational amplifier and their applications.
Ш	Active Filters	Introduction, First Order Low-Pass Butterworth Filter, Second Order Low-Pass Butterworth Filter, First Order High-Pass Butterworth Filter, Second Order High-Pass Butterworth Filter, Numerical Problems	It will be beneficial to study the noise suppresures.
IV	Specialized ICs	Block Diagram of IC555, IC 555 as Astable Multivibrator, IC555 as Monostable Multivibrator, IC566 (Pin Diagram, Block Diagram and Use as VCO), Numerical Problems	Students will be able to understand the working principal of specialized ICs.

Course Outcome:

1. Concept of an ideal amplifier, knowledge of IC 741 and its applications.

2. It will be beneficial to study the noise suppresures

3. able to understand the working principal of specialized ICs.

Signature of Teacher

Dr K S Kanse

Department: **Electronics**

Program: B.Sc.

Class : Second Year Sem IV

Subject: Electronics

Course Code: CCE-IV (Section B) Paper No. IX

Paper Title: Microprocessor Interfacing

Unit	Unit Name	Topics	Unit-wise
Number			Outcomes
I	Basic Interfacing Concepts	Introduction, memory mapped I/O scheme, I/O mapped I/O scheme, Data Transfer Schemes:- Synchronous, Asynchronous, Interrupt Driven and DMA	Able to understand the basic concepts of interfacing
11	Interfacing Chips	Schematic Diagram (Functional Pin Diagram), Block diagram and Operating modes of the ICs- 8253, 8255, 8259, 8257, Control registers of 8255 and 8253	Able to use of various interfacing chips.
III	Microprocessor Applications	Demultiplexing of AD7-AD0 bus, Interfacing concepts of I/O devices using decoder (74LS138), Chip Select logic, Generation of MEMR ,MEMW, IOR and IOW signals, Tristate buffer (74LS244), Latches (74LS373), Interfacing switches, LED, relays	Knowledge of interfacing concepts and application of interfacing chips for interfacing of I/O devices
IV	Data Converters	Interfacing of ADC 0808 & DAC 0808 using 8255	Knowledge of interfacing of ADC and DAC.

Course Outcome: After completion of this course students will be -

- 1. Able to understand the basic concepts of interfacing.
- 2. Able to use of various interfacing chips
- 3. Able to understand interfacing concepts and application of interfacing chips for interfacing of I/O devices
- 4. Able to understand interfacing of ADC and DAC

Signature of Teacher

Name of the Teacher	: A G Chawha	n	
Department	: Electronics		
Program	: B Sc	Class: III Year, Semester-V	Subject: Electronics
Course Code	: DECE-I		
Paper Title	: Communicat	ion Electronics –I (P-XII)	

Unit Number	Unit Name	Topics	Unit wise outcome
1	Basic of Communication System	Introduction, Block diagram of Basic communication system, Classification of communication systems: Direction, Nature of signal & Technique of transmission, Need of Modulation, Types of Modulation, Bandwidth	Explain the working of Basic communication system. Detailed Classification of communication systems based on three different themes. Void reasons towards Need of Modulation, Different Types of Modulation, Calculation of Bandwidth
2	Amplitude Modulation	Amplitude Modulation theory, Mathematical representation of AM wave, Modulation Index, frequency spectrum of AM wave, Bandwidth of AM wave, Power relations of AM wave, AM circuits: Basic circuit for BJT Collector modulation, Amplitude Modulator circuit.	Derivation of expression of AM wave. Explanation of frequency spectrum & Bandwidth of AM wave, Derive Power contents of AM wave. Generation and Detection of AM wave
3.	Frequency Modulation	Theory of Frequency Modulation, Mathematical	Derivation of expression of FM wave.

		representation of FM wave,	Explanation of
		Bandwidth of FM wave,	Bandwidth of FM
		Generation of FM- Direct	wave,
		method for FM generation,	
		Transistor reactance modulator,	Generation of FM wave
		Varactor reactance modulator,	With three methods.
4.	Pulse Modulation	Introduction, Classification of	Explain the
		Pulse Modulation systems,	classification of Pulse
		Sampling theorem, Nyquist	Modulation systems,
		Criteria, Basic Principles of	Sampling theorem,
		Pulse Amplitude Modulation,	Nyquist Criteria,
		Pulse Width Modulation,	Introduction to PAM,
		Pulse Position Modulation,	PWM & PPM
		Generation & Detection of PAM	Explain PCM
		Digital Pulse Modulation :	Transmitter Receiver,
		Introduction, PCM transmitter,	Quantization Process,
		PCM Receiver, Quantization	Quantization error,
		Process, Quantization error,	Applications of PCM,
		Applications of PCM,	Advantages &
		Advantages & Disadvantages of	Disadvantages of PCM
		РСМ	

- 1. Understanding of communication systems.
- 2. Understand working of Analogue modulation techniques.
- 3. Understand working of Analogue pulse modulation system.
- 4. Understand working of Digital Pulse Modulation.

Specify Program outcome

After completion of this course, students will be able to explain various types of communication system based of concept of modulation. The course enables the students to explain importance of modulation in communication system.

Name Of the Teacher : Dr Tak A S

Department : Physics Program:B Sc Third year Sem V Subject : Electronics

Course Code :CCEI -B Paper XIII

Paper Title : Introduction to Microcontroller 8051

Unit	Unit Name	Topics	Unit
No			wise
			outcome
Ι	Microprocessors	Block Diagram of a microprocessor, Block	Majority
	to	Diagram of a microcontroller, Comparison between	students
	Microcontrollers	microprocessor and microcontroller	passed
II	Introduction to	Features, Pin diagram, functional pin diagram and	Majority
	Microcontroller	pin description, Architecture, Reset, Memory	students
	8051	organization, CPU timings.	passed
III	Instruction Set	Addressing modes, Data transfer Instructions,	Majority
	of	Arithmetic Instructions, Logical Instructions,	students
	Microcontroller	Branch Instructions, Bit Manipulation Instructions	passed
	8051		
IV	Assembly	Introduction to 8051 Assembly programming,	Majority
	Language	Assembling and running an 8051 program, The	students
	Programming	Program Counter and ROM space in 8051, 8051	passed
	For	Data types and Directives, Simple Assembly	
	Microcontroller	Language Programs for 8051	
	8051		

Specify Course outcome : All students acquired fundamental knowledge and are ready to acquire advance knowledge of l Electronics

Specify Program outcome : Program gave good platform to face challenges while studying skill development programs like EMBEDDED SYSTEM DESIGN, AUTAMATION & SKDA etc

Signature of Teacher

Dr Tak A S

Name of the Teacher	: A G Chawha	In	
Department	: Electronics		
Program	: B Sc	Class: III Year, Semester-VI	Subject: Electronics
Course Code	: DECE-II		
Paper Title	: Communicat	tion Electronics –I (P-XIV)	

Unit	Unit Name	Topics	Unit wise outcome
Number			
1	Radio Receivers	Introduction, Block diagram of communication receiver, Tuned radio Frequency Receiver, Superheterodyne Receiver, Characteristics of Radio Receivers- Selectivity, Sensitivity & fidelity, Image frequency & its rejection, Double Spotting	Working of TRF & Superheterodyne Radio Receiver, Explain Characteristics of Radio Receivers and the method to calculate it experimentally, Meaning & Calculation of Image frequency & its rejection, Concept of Double Spotting
2	Microwaves & Radar System	Introduction to Microwave properties, Applications of Microwaves, Basic Principles of Radar System, Block Diagram of Basic Pulsed Radar, Radar Range Equation, Moving target indication, CW Doppler Radar.	Explain few properties & applications of Microwaves. Explain working principles of a radar, Working of different blocks of Basic Pulsed Radar, Derive Radar Range Equation, Explain working of Moving target indicator Radar & CW Doppler Radar

3.	Introduction to Mobile Communication	Historical perspectives, Cellular System, 3G System, 4G System	Explain Historical Background of Mobile Communication, Working of Cellular System, Brief introduction to 3G & 4G System
4.	Introduction to Optical Fibres	Structure of Optical Fibres, Classification of Optical Fibres, Propagation of Light, Refraction & Snell's law, Total Internal Reflection, Light propagation through Optical Fibre, Acceptance angle & Numerical Aperture, Dispersion, Intermodal Dispersion, fibre characteristics, Fibre losses, Calculation of Losses, Choice of wavelength, Fibre Optic Communication, Applications of Fibre Optic Communication, Advantages & Disadvantages of Optical Fibre.	Explain structure of Optical Fibres Explain various types of Optical Fibres, Explain Propagation of Light through Optical fibres with reference to Refraction & Snell's law, Total Internal Reflection, Calculation of Acceptance angle & Numerical Aperture & Intermodal Dispersion & Fibre losses, Explain Applications , Advantages & Disadvantages of Fibre Optic Communication.

- 1. Understanding of Radio receiver communication systems.
- 2. Understand working of various types of Radar & their working.
- 3. Understand structure, types & working of Optical Fibres system.

Specify Program outcome

The successful completion of this course allows the students to make use of appropriate communication system at proper place. He now has knowledge of radio receivers, radars and fibre optic communication systems along with mobile.

Name Of the Teacher : Dr Tak A S

Department : Physics Program : B Sc Third Year Sem VI Subject : Electronics

Course Code : Paper XV(B)

Paper Title : Microcontroller 8051 Programming and Interfacing

Unit	Unit Name	Topics	Unit
No			wise
			outcome
T	I/O Dont	I/O Dout Drogramming, 8051 I/O Drogramming, I/O	Maiamity
1		1/O Port Programming: 8031 1/O Programming, 1/O	Majority
	Programming	Bit Manipulation Programming, Programming	students
	and Timer	Examples, Timer Programming: Programming 8051	passed
	Programming	Timers, Counter programming, Programming	
		Examples	
		-	
II	Serial Port	Basics of Serial Communication, 8051 Connection	Majority
	Programming	to RS232, 8051 Serial Port Programming,	students
		Programming Examples	passed
	-		
III	Interrupt	8051 Interrupts, Programming Timer Interrupts,	Majority
	Programming	Programming External Hardware Interrupts,	students
		Programming the Serial Communication Interrupt,	passed
		Interrupt priority in 8051, Programming Examples.	
IV	Interfacing	Interfacing of Switches, Relays, LEDs, LCDs,	Majority
		Stepper Motor, DAC 0808, ADC 0808, External	students
		Memory and IC8255 with Microcontroller 8051	passed

Specify Course outcome : All students acquired fundamental knowledge and are ready to acquire advance knowledge necessary for research skill development

Specify Programoutcome : Program gave good platform to face challenges while studying skill development programs like EMBEDDED SYSTEM DESIGN, AUTAMATION & SKDA etc

Signature of Teacher

Dr Tak A S