

Dharmabad Shikshan Sanstha's

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H, M. Kasralikar

Department: Chemistry

Subject: Chemistry

Program: B. Sc. FY Semester –I CBCS

Course Code: CH-101

Paper : I

Paper Title: Organic + Inorganic Chemistry

Unit	Unit Name	Торіс	Unit wise
T T •/			Outcome
Unit	Nomenclatu-	01) Functional groups and types of organic	Consolidate &
Ι	re of Organic	compounds, Basic rules of IUPAC nomenclature,	Recall
	Compounds	Nomenclature of mono- and bi-functional compounds	formulae &
		on the basis of priority order of the following classes	Names of
		of compounds: alkanes, alkenes, alkynes, haloalkanes,	organic
		alcohols, ethers, aldehydes, ketones, carboxyclic	compounds.
		acids, carboxylic acid derivatives (acid halides,	
		esters, anhydrides, amides), nitro compounds, nitriles	
		and amines; Nomenclature of aromatic compounds:	
		mono-, di-, and polysubstitutedbenzene (with not	
		more than two functional groups),	
		Monosubstitutedfused polycyclic arenes –	
		naphthalene, anthraceneand phenanthrene.	
		Nomenclature of bicyclic compounds.	
		02) Basic Concepts In Organic Chemistry : Substrate	
		and Reagents. Types of reagents(Electrophilic and	
		Nucleophilic). Homolytic and heterolytic fission.	
		Electron mobility: a) Inductive effect (effect on	
		acidic strength of the following acid: acetic acid,	
		propanoic acid and α -chloro acetic acid) b)	
		Mesomerism (aniline, nitrobenzene) c)	
		Hyperconjugation (toluene) d) Stearic effect(mesitoic	
		acid) Formation and Study of reaction intermediates	
		with stability order (Carbocations, Carbanions,	
		Freeradicals, Carbenes, Nitrenes, Arynes.) Types of	
		organic reaction: Substitution, Addition, Elimination,	
		Rearrangement (with one example).	
Unit-	Alkanes and	3.1 Alkanes Introduction, Preparation of alkane from	Building
II	Cycloalkanes	a) Hydrolysis of Grignard reagent b) Kolbes	confidence to
		synthesis c) Corey House synthesis Chemical	predict
		Reactions: a) Pyrrolysis (mechanism) b)	
		Aromatization 3.2 Cycloalkanes Introduction,	~
		Synthesis from a) Adipic Acid b) Aromatic	organic
		hydrocarbon c) Dickman reaction. Baeyer-Strain	products.
		Theory and Sache Mohr Theory. Ring opening	

III	Alcohols and Epoxides	reaction with H2 and HI 4. Alkenes, Dienes and Alkynes : 08 4.1 Alkenes Introduction,Preparation methods: a) But-1-ene from 1-butyne, b) But-2-ene from n-butyl alcohol and sec-butyl alcohol. Chemical Reactions: (with mechanism) a) Electrophilic addition of Br2 to ethene b) Free radical addition of HBr to propene. (Peroxide effect) c) Reaction of propene with Cl2/ H2O (Chlorohydrin formation) d) Oxymercuration-Demercuration reaction (Conversion of 3, 3-dimethyl-1-butene to 3, 3-dimethyl-2-butanol) e) Cis-hydroxylation using alkaline KMnO4. 4.2 Dienes Introduction and classification Resonance structure and molecular orbital picture of 1, 3- butadiene Preparation methods of 1, 3-butadiene froma)1, 4-dibromobutane b)1,4-butanediol. Chemical Reactions: a) Addition of Br2 and HBr to 1,3-butadiene b) Addition of ethene to 1,3-butadiene (Diel's-Alder reaction) 4.3 Alkynes Preparation of ethyne (Acetylene) from a) Iodoform b) Hydrolysis of calcium carbide Chemical Reactions (With Mechanism): Electrophilic addition of ethyne with HBr and Br2. Alcohols Introduction and Classification. i) Dihydric alcohols: (Ethylene Glycol) Nomenclature, Preparation methods: a) Hydroxylation of alkene b) 1, 2-dihalaalkanes. Chemical reactions: Reaction with hydrogen chloride (HCl) Oxidation with lead tetra acetate [Pb(OCOCH3)4] Dehydration of ethane- 1, 2-diol using P2O5 / ZnCl2 ii)Trihydricalcohols : (Glycerol) Nomenclature, Preparation methods from a) Fats and oils b) Propene Chemical reactions : a) Reaction with nitric acid b) Reaction with hydroiodic acid c) Reaction with acetyl chloride 5.2 Epoxides Introduction and nomenclature Preparation Methods : a) Oxidation of ethene in the presence of silver catalyst b) Oxidation of ethene with peracetic acid Chemical reactions : Ring opening reaction of epoxides (propylene oxide): by acidic reagent and basic Reagent.Reaction of epoxyethane with CH3- Mg-I and CH3-Li.	Know the importance of Alcohols & reactions of different derivatives.
		Mg-I and CH3- Li.	
IV	Periodic Table and Periodic properties	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form	Know the importance of
	properues	of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements. B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a	periodic table & properties of elements.

		group. b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors affecting ionization energy. Variation of ionization energy along a period and in a group.Applications of ionization energy to chemical behavior of an element. c) Electron Affinity: Definition and Explanation, Successive electron affinity, Factors affecting electron affinity. Variation of electron affinity along a period and in a group.Applications of electron affinity to chemical behavior of an element. Difference between ionizationenergy and electron affinity. d) Electronegativity: Definition and Explanation, Factors affecting electronegativity. Variation of electronegativity along a period and in a group.Pauling's approach of electronegativity. Calculations of electronegativity by Pauling's method (Numerical), Mulliken , s approach. Applications of electronegativity to bond properties such as percent ioniccharacter, bond length, bond angle.	
V	Noble Gas Chemistry	a) Position in the Periodic table b) Electronic configuration c) Compounds of inert gases, under excited condition, through coordination, by physical trapping (Clathrates). d) Fluorides of xenon : XeF2 , XeF4 and XeF6 preparation, properties and structures.	electronic

Specify Course Outcome: Acquire basic concepts such as formulae, nomenclature, reactions of organic compounds.

Specify Program Outcome: Creating awareness among students about importance, applications, classification, preparations of organic compounds.

Signature of Teacher Dr. N. S. Kaminwar Mr. S. L. Nakkalwar Dr. H. M. Kasralikar

Dharmabad Shikshan Sanstha's

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. S. B. Patwari, Mr. S. L. Nakkalwar & Dr. H.M. Kasralikar

Department: Chemistry

Program: B. Sc. FY Semester -I CBCS

Subject: Chemistry

Course Code: CH-102,

Paper Title: Physical + Inorganic Chemistry

Paper : II

Unit	Unit Name	Торіс	Unit wise Outcome
I	Mathematic al Concept and SI Units	 (A) Mathematical concept: 1.1 Logarithm: Rules of logarithm, Characteristic and Mantissa, Change of sign and base, Numerical problems. 1.2 Definition of pH and pOH, Relation between pH and POH, Numerical Problems based on PH and POH. 	Outcome Rules of logarithm, drawing graph, Derivatives, Integration, different mathematical
		 1.3 Graphical representation: Rules for drawing graph, coordinates etc., Equation of straight lines, slope and intercept and Numerical Problems. 1.4 Derivative: Rules of differentiation, partial differentiation, Algebraic, logarithmic and exponential functions. 1.5 Integration: - Rules of integration, Algebraic and exponential functions. 1.6 Permutation, combinations and Probability, Numerical Problems. (B) SI Units: 1.7 International systems of units, derived units, subsidiary units, prefixes used in SI units, internal conversions of these units. 	concept and SI units, and their use in solving numerical.
II	Surface Chemistry	 2.1 Introduction, Adsorption, mechanism of adsorption, factors affecting adsorption. 2.2 Difference between adsorption and absorption. 2.3 Types of adsorption: Physical adsorption and chemical adsorption. 2.4 Adsorption of gaseous by solids. Adsorption isotherm, Types of adsorption isotherm: i) Freundlich adsorption isotherm ii) Langmuir adsorption isotherm (Derivation). 	Learning surface phenomena at heterogeneous surfaces.
III	Gaseous Chemistry	3.1 Kinetic molecular theory of gases -Postulates of kinetic molecular theory of gases. Derivation of kinetic gas equation. Ideal and non-ideal gases.	learn the basic knowledge of gas phase,

			77
		 3.2 Deviation of gases from Ideal behavior and Compressibility factor (Z). Derivation of Van der waals equation, Units for Van der Waal's constants. 3.3 Critical phenomenon-The P-V isotherms of Carbon dioxide, application of Vander Waals' equation to the isotherms of Carbon dioxide, relation between critical constants and Van der Waals constants 3.4 Liquefaction of gases, Linde's method, Claude's method. 3.5 Molecular velocities-Root mean square, average and ii) Most probable velocities, Relation between molecular velocities Qualitative discussion of the Maxwell's distribution of molecular velocities. 3.6 Numerical on Vander Waals constants and Critical constants. 	Kinetic molecular theory, critical phenomenon, liquefaction and molecular velocities
IV	Solid State	Critical constants, Root mean square velocities.4.1 Introduction, Characteristics of solids, space	Impart
	Solid State	 4.1 Introduction, Characteristics of solids, space lattice and Unit Cell. 4.2 Laws of crystallography :- (i) Law of constancy of interfacial angles, (ii) Law of symmetry, Symmetry elements in crystals and (iii) Law of rational indices. 4.3 Weiss indices and Miller indices, Determination of Miller indices. Numerical on Miller indices 4.4 Cubic Unit cells and types of cubic unit cells, spacing of lattice planes. 4.5 X-rays crystallography, Derivation of Bragg's equation. Experimental methods- The Rotating Crystal method and The Powder method. 4.6 Determination of Bragg's equation. 	-
V	S-Block elements	General characteristics of S-block elements Variation in properties of S-block elements, atomic radii , ionization potential, colour of flame, reducing property and metallic property, diagonal relationship between Li and Mg, Points of difference between Li and other alkali metals. General study of hydrides of IA and IIA group. General studies of Oxides IA and IIA group, Basic strength of hydroxides of alkali and alkaline earth metals , Carbonates and bicarbonates of alkali and alkaline earth metals. Complexes of alkali metals with salicylaldehyde ,acetylacetone. wrap around complexes with polydentate ligand such as crown ether and cryptate. Complexes of alkaline earth metals such as beryllium oxalate ion, chlorophyll and complex of calcium with EDTA.	characteristics of s-block elements, oxides, hydroxide, carbonate & its complexes

VI	Oxidation and	Definition of oxidation, Reduction, Oxidizing agent and reducing agents according to classical	reduction by
	Reduction	concept, electronic concept, oxidation number concept. Rules for assigning oxidation number,	
		Balancing of redox reaction by	
		1) Ion-electron method and	
		2) Oxidation number method	

Specify Course Outcome: Familiarize the students with the concept and principle of Rules of logarithm, drawing graph, Derivatives, Integration, different mathematical concept and SI units. surface phenomena at heterogeneous surfaces and basic knowledge of gas phase, Kinetic molecular theory, critical phenomenon, liquefaction and molecular velocities. Impart knowledge about solid phase, crystallography and some crystal structure characteristics of s-block elements, oxides, hydroxide, carbonate & its complexes oxidation and reduction by different methods.

Specify Program Outcome: Understand the students with the Rules of logarithm, Derivatives, Integration, concept and SI units surface phenomena and gas phase, Kinetic molecular theory, critical phenomenon, liquefaction and molecular velocities. To know about solid phase, crystallography and some crystal structure characteristics of s-block elements, oxides, hydroxide, carbonate & its complexes, oxidation and reduction by different methods

Signature of Teacher Prof. S. B. Patwari Mr. S. L. Nakkalwar Dr. H. M. Kasralikar

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Kaminwar & Dr. H. M. Kasralikar Department: Chemistry

Program: BSc FY Semester –II CBCS Subject: Chemistry Course Code: CH-103 Paper Title: Organic + Inorganic Chemistry Paper – III

Paper Tit	tle: Organic + In	organic Chemistry Paper – III	
Unit	Unit Name	Торіс	Unit wise
			Outcome
Unit	Aromatic	Source, Nomenclature, isomerism of aromatic	Understand
-1	Hydrocarb-	compounds. Structure of benzene, stability,	Aromaticity,
	ons and	orbital picture of benzene. Aromaticityand anti-	Anti-
	Aromaticity	aromaticity byHuckel's Rule (Benzene,	aromaticity of
		Naphthhalene, Anthracene, Pyrrole, Furan,	organic
		Thiophene, Pyridine, Cyclobutadiene,	molecules
		Cyclopentadienylcation and anion). Mechanism	accessing
		of electrophilic aromatic substitution of	Huckel's
		benzene: Nitration, halogenation, Birch	Rule.
		reduction, Friedal Craft alkylation and acylation. Orientation : Effect of Activatingand	
		Orientation : Effect of Activatingand Deactivating Groups (-OH, - NO2, -CH3,Cl	
		groups)On Aromatic Electrophilic (Nitration)	
		substitution reaction (with mechanism)	
II	Phenols,	Introduction, Classification, Acidic character	Predict the
	Haloalkene	(Comparison of acidity : phenol and ethanol)	stepwise
		Chemical Reactions : Reimer-Tiemann	mechanism
	and	reaction(Mechanism), Acetylation (mechanism),	of reactions
	Haloarene	Fries rearrangement(Mechanism), Lederer-	of phenols,
	B]Allyl	Manase reaction, Kolbe's Carboxylation reaction	Haloalkenes
	Iodide	(Mechanism), Hauben-Hoesch reaction.	&
		3. Haloalkene and Haloarene 08 Haloalkene A]	Haloarenes.
		Vinyl Chloride: Synthesis of vinyl chloride from	
		1) 1, 2- Dichoroethane 2) Ethene 3) Ethyne	
		Chemical Reactions : Resonance structure of	
		vinyl chloride Addition reaction with Br2 and	
		HBr, polymerization reaction.	
		B] Allyl Iodide: Synthesis of allyl iodide from (a)	
		allyl chloride (Finkalstein reaction) (b) glycerol	
		and HI. Chemical Reaactions : Reaction with	
		NaOH, KCN, NH3, AgNO2 and Br2. Haloarene	
		Nomenclature, Synthesis of halobenzene from 1)	
		Hunsdiecker reaction 2) Gatterman reaction 3) Balz- Schiemann reaction. Chemical Reaactions:	
		(with mechanism) Ullmannbiaryl synthesis, Dows	
		process (Reaction with NaOH) Relative reactivity	
		of alkyl halide v/s vinyl and aryl halide towards	
		nucleophilic substitution.	

III	Carboxylic	A] Acid chlorides:(Acetyl chloride) Introduction	Finding less
	acid	Preparation Methods: a) By the action of thionyl	expensive
	derivatives	chloride on acetic acid. b) By the action of	chemical
	uenvauves	phosphorus pentachloride on acetic acid.	methods to
		Chemical Reactions: a) Hydrolysis b) Action	synthesise
		with alcohol c) Action with amines d) Action	desired
		with sodium acetate. B] Acid anhydride : (acetic	productsof
		anhydride) Introduction Preparation Methods: a)	carboxylic
		From acid halide and carboxylic acid b) From	acids.
		sodium acetate and acetyl chloride. Chemical	
		Reactions: a) Hydrolysis b) Action with alcohol	
		c) Action with amines d) Action with benzene C]	
		Esters:(Ethyl acetate) Preparation Methods: a)	
		From ethyl alcohol and acetic acid b) From ethyl	
		alcohol and acetyl chloride. Chemical Reactions:	
		a) Alkaline hydrolysis. b) Actionof amines	
		c) Reduction. D] Amides: (Acetamide)	
		Preparation Methods: a) By the action of	
		ammonia on acid chloride. b) By the action of	
		ammonia on acetic anhydride. Chemical	
		Reactions: a) Hydrolysis b) Action of nitrous	
		acid c) Reduction d) Action of Br2	
		and NaOH.	
IV	Study of P-	Part -II Inorganic chemistry	Know the
	block	Variation in properties : atomic radius, ionization	periodic table
	elements	energy, electron affinity, electronegativity , metallic character , melting and boiling point ,	ofP-Block
		oxidizing and reducing properties, Variation in	elements.
		acidic and basic character of hydroxides of P-	
		block elements, diagonal relationship between B	
		and Si.	
V	Acids	Introduction, Arrhenius concept, Bronsted-Lowry	Distinguish
	and	concept, Lewis acids and bases concept Discuss	between acids &
	Bases.	briefly with suitable example. Solvent	Bases with
	Dases.	systemconcept, Cady-Elsey concept, Lux-Flood	respective
		concept and Usanovich concept for acids and	chemical
		bases. Definition of Hard, Soft and borderline	properties.
		acids and bases with various example. Pearson's	
		principle (SHAB Principle), theories of hardness	
		and softness such as Electronic theory, pibonding	
		theory and Pitzer's theory. Application of SHAB	
		Principle such as relative stability of compound,	
		feasibility of chemical reaction. Limitation of	
		SHAB concept.	

Specify Course Outcome: Understand the aromatic, aliphatic compounds pertaining to chemical and physical properties.

Specify Program Outcome: Familiarize the students with the concept of reactions, mechanism, and synthesis of organic molecules.

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Kaminwar & Dr. H. M. Kasralikar

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. S. B. Patwari, Mr. S. L. Nakkalwar & Dr. H. M. KasralikarDepartment: ChemistryProgram: B. Sc. FY Semester-IISubject: ChemistryCourse Code: CH-104Paper Title: Physical + Inorganic ChemistryP-IV

Unit Number	Unit Name	Toniog	Unit-wise Outcome
	Atomic	Introduction, Rutherford's alpha particle scattering	
-	Structure		knowledge of
	Structure	drawbacks. Bohr's theory of hydrogen atom: Bohr's	
		atomic model- Postulates, Merits and demerits.	
		Derivation for radius of an orbit, velocity of an electron	
		and energy of an electron. Energy difference in terms of	
		wave number and Rydberg constant. Bohr's explanation	
		of hydrogen spectrum. The Sommerfeld extension of the	
		Bohr theory. Electronic configuration of elements:	
		Aufbau principle, Pauli's Exclusion principle, Hund's	
		rule of maximum multiplicity and $(n + 1)$ rule.	
		1.4 Numerical problems on radius and energy. 1.5	
	T • • 1 G4 . 4 .	Quantum numbers.	T : C
II	Liquid State	Introduction, Various intermolecular forces in liquids	
		dipole-dipole attraction, London forces, Hydrogen	
		bonding. Surface tension of liquid, units of surface	
		tension, effect of temperature on surface tension, determination of surface tension of liquids by	
		1 2	and parachor
		stalagmometer method, numerical Problems based on method. Viscosity of liquid, units of viscosity, effect of	
		temperature on viscosity, measurement of viscosity by	
		Ostwald's method, numerical Problems based on	
		method. Parachor and chemical constitution:	
		Relation between parachor and surface tension,	
		application of parachors in deciding structures.	
III	Colloidal	Introduction, classification of colloidal systems.Sols	Student will learn
	State	•	the basic
	~ •••••	Dispersion and aggregation methods. Properties of sols-	
			colloidal state,
			types, preparation,
		and electro osmosis). Coagulation of colloidal solution	
		· •	applications of
			colloidal state
		emulsions, preparation of emulsion, Emulsifier, Role of	
		emulsifier. Gels (Liquids in solids):- Classification gels,	
		preparation of gel and properties gel –Hydration,	
		Swelling, Syneresis and Thixotropy. Applications of	
		colloids (Food, Medicine, smoke precipitation, sewage	
		precipitation and in purification of water.)	

IV	Catalysis	Introduction to Catalyst and Catalysis. Catalyst-Type of catalyst, positive and negative catalyst with examples. 4.3 Catalysis:-Type of catalysis, homogenous and heterogeneous catalysis with examples Autocatalysis- explanation with examples. Characteristics of catalytic reactions. Promoters: - Definition, example, explanation of promotion action. 4.7 Catalytic poisoning: - Definition, example, explanation of catalytic poisoning. 4.8 Acid-Base catalysis, General Acid-Base catalysis, examples. 4.9 Enzyme catalysis, characteristics of enzyme catalysis. 4.10 Applications of catalysis in industries.	Learning and understanding of catalysis, types of
V	Chemical Bonding I	 Definition, Cause for chemical bonding, Types of chemicalbonding. <i>Ionic Bonding:</i> Definition and explanation, Factors affecting the formation of ionic bond, Energy charges in the formation of ionic bond, Lattice energy and Born-Haber cycle. Polarizing power andpolarisability andFajan's rule. <i>Covalent bonding :</i> Definition and explanation, Sigma and pi-bond, Valence bond theory of covalent bonding and its limitations, Percentage ionic character in covalent bond from dipole moment and electronegativity difference (Numericals). <i>Metallic bonding:</i> Definition and explanation, Free electron theory of metallic bonding. Definition and explanation, Types of Vander Waal's forces responsible for Vander waals bonding. <i>Hydrogen bonding:</i> Definition and explanation, Types of hydrogen bonding and consequences of hydrogen bonding. Unique properties of water based on hydrogen bonding. Importance of hydrogen bonding in sustaining life. 	To understanding the chemical bond and its different types of bonds
VI	Chemical Bonding II	 Concept of hybridization: Definition and explanation of dsp² hybridization by taking example of [Ni(CN)4]-2, sp³d hybridization by taking example PC15, Sp³d² hybridization by taking example SF6. Sp³d³ hybridization by taking example IF7. VSEPR Theory: Postulates and explanation, Applications in explaining geometry and bond angle in molecules such as CH4, NH3, and H2O. Limitations of VSEPR theory. Molecular Orbital Theory: Basic principle of MOT, LCAO, Bonding and antibonding molecular orbital, Energy level diagram for molecular orbital. Rules for adding electronsin MO's, Bond order, Molecular orbital diagram of homo nuclear diatomic molecules such as H2, N2, O2, and Ne2 And CO. 	Learning the Concept of hybridization and study of VSEPR & Molecular Orbital theory

Specify Course Outcome: To impart knowledge of different theories of atomic tructure, rules of electronic configuration and quantum numbers also Liquid phase as surface tension, Viscosity and parachor. colloidal state, types, preparation, properties and applications of colloidal state. Catalysis, types of catalysis and characteristics of catalyzed reactions chemical bond and its different types of bonds Learning the Concept of hybridization and study of VSEPR & Molecular Orbital theory

Specify Program Outcome: Understand concept of Atomic structure, Liquid state, Colloidal state, Catalysis and Chemical Bonding

Signature of Teachers Prof. S. B. Patwari Mr. S. L. Nakkalwar Dr. H. M. Kasralikar

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. S. B. Patwari, Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H. M. Kasralikar

Department: Chemistry

Subject: Chemistry

Program: BSc FY CBCS **Course Code:** CH-105

Paper Title: Inorganic + Organic + Physical Chemistry **Paper** – V

Unit	Unit Name	Topics	Unit-wise
No.			Outcome
Ι	Inorganic Chemistry	A) Inorganic Chemistry Identification of Two acidic and Two basic radicals by Semi-micro qualitative	Analyse & identify of
	Chemistry	analysis technique.(Including interfering radicals).	acidic & basic
		(Any Six) 1) At least eight mixtures of salt must be	radicals
		practiced. 2) Spot- tests (of each radical) are	radicals
		compulsory.	
II	Organic	B) Organic Chemistry I) Preparations (Any Four) : a)	Nurture the
	Chemistry	Phthalimide from phthalic anhydride and urea.	research
		b)Acetanilide from aniline. c) Iodoform from acetone.	attitude to
		d) Phenyl – azo – β –naphthol from aniline. e) m -	synthesize
		Dinitobenzene from nitrobenzene. f) Phthalic	various organic
		anhydride from phthalic acid. (Recrystallization and	products.
		Melting point of product is compulsory)	
		II)Determination of Physical constant of Organic	
		liquids (Any four) Aniline, Ethanol, Toluene,	
		Benzene, ortho and meta toluidines, Chlorobenzene	
		and Nitrobenzene. III)Demonstration on purification	
		by - a)Recrystalisation of Phthalic acid/Benzoic acid	
		from hot water. b) Distillation of Ethyl alcohol. c)	
		Sublimation of Napthalene.	
III	Physical	C) Physical Chemistry (Any Six) 1. Determination of	Creating the
	Chemistry	the Viscosity of liquid by Ostwald's viscometer. 2.	skills of
		Determination of the Viscosity of two pure liquids A	accessing
		& B. Hence find the composition of the mixture of two	instruments
		liquids. (Density data of liquids, viscosity of water to	
		be given). [Any two liquids from : Acetone, Carbon	
		terachloride, Chloroform, Ethyl alcohol, Benzyl	
		alcohol, Ethylene glycol and n-propyl alcohol]. 3. To	
		determine the surface tension of a given liquid by	
		stalagmometer method.	

Specify Course Outcome: Creating awareness of chemistry practical's regarding analysis, synthesis and instrumental skills.

Specify Program Outcome: Building confidence of chemistry practical knowledge among the students.

Signature of Teacher: Prof. S. B. Patwari, Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H. M. Kasralikar

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Dr. N. S. Kaminwar,
Department: Chemistry
Subject: Chemistry
Paper Title: Organic + Inorganic Chemistry

Program: B. Sc. SY Semester –III CBCS **Course Code**: CH-201, **Paper : VI**

Unit	Unit Name	Topics	Unit-wise
Number	Unit Name	Topics	Outcome
Ι	Name Reaction	A) Condensation reactions of Aldehydes and	Learn the
	with	Ketones. 1. Benzoin Condensation Reaction. 2.	mechanism of
	Mechanism	Knoevengel Reaction. 3. Mannich Reaction 4.	name reactions
		Perkins Reaction, 5. Reformatsky reaction. 6.	Learn the
		Gatterman Koch reaction. 7. Gatterman synthesis.	mechanism of
		B) Reduction reactions 1. Clemmensen	name reactions
		Reduction Reaction. 2. eervin-Pondorof- Verly	
		reduction reaction. 3. Reduction with LiAlH4. 4.	
		Reduction with NaBH4. [C] oxidation reactions.	
		1. Baeyer- Villiger Oxidation Reaction. 2.	
		Oppenauer oxidation.	
II	Aromatic	1. Introduction and Classification of Aromatic	Know the
	Carboxylic and		Classification,
	Sulphonic	Reactions of Following Acids. [A] Benzoic Acid.	Synthesis, and
	Acids.	1. Preparations From: (a) Phenyl Cyanide, (b)	Reactions of
		Toluene. 2. Reactions of Benzoic Acids: a) Acyl	Aromatic
		halide formation b) Reduction. C) Nitration [B]	Carboxylic and
		Anthranilic Acid: 1. Preparations From : (a)	Sulphonic
		Phthalimide. b) O-nitroToluene. 2. Reactions of	acids.
		Anthranilic Acids: a) Action of heat, b) Nitrous	
		Acid, c) Action of acetic anhydride/acetyl	
		chloride. [C] Salicylic Acid: 1. Preparations	
		From: (a) Kolbe's reaction. (b) Reimer-Tiemann	
		reaction. 2. Reactions of Salicylic Acids: a)	
		Bromination, b) Nitration, c) Decarboxylation, d)	
		Reaction with Zn-dust. [D] Phthalic Acid 1.	
		Preparations From: (a) o-xylene. (b) Naphthalene.	
		2. Reactions of Phthalic Acids: a)Action of heat.	
		b) Action of PC15. C) Action of ethanol. [E]	
		Benzene Sulphonic Acid. 1. Introduction. 2.	
		Preparation of benzene sulphonic acid from	
		benzene with mechanism. 3. Chemical Reactions of benzene sulphonic acid, a) Salt formation b)	
		formation of sulphonyl chloride, c) formation of	
		sulphonic ester and amide. 4. Replacement of	
		sulphonic group by: a) Hydroxyl group. b) cyano	
		group, c) Hydrogen atom d) NH2 –group.	
		group, c) frydrogen atom u) NHZ –group.	

	[4]	1 Propagation of Mothyl magnosium bromide 2	Vnow the
III	[A] Introduction to	1. Preparation of Methyl magnesium bromide. 2.	Know the
	Introduction to	Synthetic applications of Methyl magnesium	Synthesis, and Reactions of
	Organometallic Compounds		
	Compounds.	2- propanol, 2-methyl-2-propanol, Ethanal, 2-	Organometallic
		propanone, ethanoic acid, Methanamine,	compounds
		Acetonitrile, Ethyl ethanoate. 2. Organo Lithium	Know the
		Compounds. 1. Preparation of methyl lithium	Synthesis, and
		from methyl iodide. 2. Synthetic application of	Reactions of
		Methyl lithium(CH3Li): Methane, Ethanol, 1-	Organometallic
		propanol, 2-propanol. 3. Organo Zinc Compounds:	compounds
		1. Preparation of diethyl zinc from ethyl iodide. 2.	
		Synthetic application of diethyl zinc [(C2H5)2Zn]:	
		Methane, 2-propanone, Ethanol, 2-propanol.	
	[B] Organic	1. Introduction, Acidity of alpha hydrogen. 2.	Learn the
	Synthesis via	Synthesis of Ethyl Acetoacetate. [Claisen	synthesis,
	Enolates.	Condensation Reaction with Mechanism]	mechanism,
		3. Ketol-EnolTautomerism of ethyl acetoacetate.	applications of
		4. Synthetic Applications of Ethyl Acetoacetate.	active
		Synthesis of Enamines, Acetylation and	methylene
		Alkylation of Enamines.	compounds
IV	Oils, Fats,	A. Introduction, chemical nature, General	Gathering basic
	Soaps and	physical properties and 1. General chemical	knowledge of
	Detergents	properties. a) Hydrolysis b) hydrogenation	Oils, Fats,
		c) hydrogenolysis d) trans-esterification	Soaps and
		e) Rancidity and autoxidation. f) Analysis of Fats	Detergents
		and Oils. i) Saponification number	Gathering
		(Saponification value) ii) Iodine number (Iodine	basic
		value) iii) Acid value iv) Reichert Meissl value	knowledge of
		(R. M. value) B] SOAPS 1. Introduction, 2.	Oils, Fats,
		Manufacture of soaps by i) Kettles process ii)	Soaps and
		Hydrolyser process.iii) Cleansing action of soap.	Detergents
		C] Synthetic Detergents. 1. Introduction, 2.	
		Synthetic detergent classification, i) Anionic	
		detergent ii) Cationic detergents iii) Non ionic	
		detergents. 3. Synthetic detergent versus soaps,	
		Soft versus Hard detergents	
V	[A] Theory of	a) Introduction: Definition of qualitative analysis,	Understand the
	Qualitative	macro, micro and semimicro qualitative analysis,	basic principle
	Analysis	radicals, acidic and basic radicals. b) Role of	and application
		sodium carbonate extract in qualitative analysis.	of Qualitative
		c) Interfering radicals. Removal of interfering	Analysis
		radicals such as oxalate, borate, fluoride and	
		phosphate. d) Use of solubility product, common	
		ion effect and complex ion formation in the	
		analysis of basic radicals: i) Separation of IIA and	
		IIB, ii) Separation of II and IIIB. iii) Separation of IIIA and IIIB iv) Separation of Zn^{++} and Mn^{++}	
		of IIIA and IIIB, iv) Separation of Zn^{++} and Mn^{++} .	
		v) Separation of Co^{++} and Ni^{++} vi) Separation of Co^{++} and Al^{+++} wij) Separation of Cu^{++} and Cd^{++}	
		Fe ⁺⁺⁺ and Al ⁺⁺⁺ . vii) Separation of Cu ⁺⁺ and Cd ⁺⁺ .	
		e) Use of organic reagents in qualitative analysis.	
		i) 8-Hydroxy quinoline for aluminium ii) α-	

		Benzoinoxime for copper. iii) Dimethylglyoxime for Nickel iv) 1,10-Phenonthroline for Iron. v) α-	
VI	[B] Non-	Nitroso-β-naphthol for cobalt.a) Introduction b) Classification of Solvents.	Know the
V I		c) Water as a universal solvent b) Physical	Classification,
	Solvents	properties of solvent: Dipole moment, Dielectric	Properties of
		Constant, Trouton's Constant, Viscosity. Melting	Non- aqueous
		Point & Boiling Point. c) Reactions in liquid	solvents
		ammonia as solvent : Auto ionization, Acid-Base,	
		Ammonolysis, Precipitation and ammonation. d)	
		Reactions in liquid SO2 : Autoionization,	
		Acid- Base, Solvolysis, Precipitation and	
		Solvation.	

Specify Course Outcome: Acquire basic knowledge about name reactions with mechanism and synthesis of aromatic carboxylic, sulphonic acids, organometallic, active methylene compounds and understand qualitative analysis with properties of non aqueous solvents.

Specify Program Outcome: Understand organic reactions with mechanism and analyze different solvents.

Name of Teacher: Dr. N. S. Kaminwar,

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. S. B. Patwari,
Department: Chemistry
Subject: Chemistry
Paper Title: Physical + Inorganic Chemistry

Program: B. Sc. SY Semester –III CBCS Course Code: CH-202 Paper : VII

Unit Number	Unit Name	Topics	Unit-wise Outcome
I	Atomic Structure and Wave Mechanics	1.1 Planck's quantum theory. 1.2 Photoelectric effect, explanation on the basis of quantum theory. Compton Effect: Statement, explanation. de- Broglie hypothesis; derivation of de-Broglie equation, explanation. 1.5 Davisson-Germer experiment.1.6 Heisenberg's uncertainty principle: Statement, explanation. 1.7 Schrodinger wave equation; Derivation in time independent form and Laplacian operator form, Physical significance of wave function (Ψ) and (Ψ 2). 1.8 Numerical on photoelectric effect, de-Broglie equation,	Understand the development of structure of atom.
II	Thermodyna mics:	Heisenberg's uncertainty principle. Introduction to First law of thermodynamics. Joule's law. Joule-Thomson effect. Joule- Thomsoncoefficient and inversion temperature. Need for second law thermodynamics, different statements of second law of thermodynamics. Carnot's cycle and its efficiency. Carnot's theorem. Numerical on efficiency of Carnot cycle.	Apply the laws of thermodyn - ami cs in day to day life.
III	Concept of entropy	Introduction, Definition, Mathematical Expression, Unit. Entropy as a state function. 3.3 Entropy change in Physical transformations: (i) Fusion of a solid. (ii) Vaporization of a liquid. (iii) Transition from one crystalline form to another. 3.4 Entropy changes for an ideal gas as a function of V and T and as a function of P and T. Entropy changes of an ideal gas in different processes. Physical significance of entropy. 3.7 Numerical on entropy change in physical transformations and entropy changes of an ideal gas in different processes.	Evaluate the concept of entropy.
- •	Phase equilibrium		Analyse the phase equilibrium.

V	[A] Nuclear Chemistry	system. Partially miscible liquids: Critical solution temperature, upper critical solution temperature. Phenol-water, triethylamine-water, nicotine-water systems. Effect of impurities on critical solution temperature. a)Introduction, composition of nucleus and nuclear size. b)Classification of nuclides: Isotopes, isobars, isotones, isotones and isomers. c) Nuclear Stability: Odd and even number of protons and neutrons, N/Z ratio, magic number, packing fractions (Numerical), mass defect (Numerical), nuclear binding energy (Numerical) and mean nuclear binding energy (Numerical). d) Release of nuclear energy: i) Nuclear fission reaction, nuclear fuels and plutonium bomb. ii) Nuclear fusion reaction, the energy of sun, hydrogen bomb. e) Definition of radioactivity, characteristics of α , β , and γ particles, group displacement law. f) Application of radioisotopes in medicine, agriculture, industry, and carbon dating.	role of nuclear chemistry in
VI	[B] Theory of Gravimetric Analysis.	 a) Introduction, definition of gravimetric analysis. b) Steps involved in gravimetrc analysis c) Precipitation, Conditions for Prcipitation d) types of precipitates. e) Factors affecting precipitation such as temperature and pH, Solubility and Solubility Product. f) Different Steps involved in gravimetric analysis: i) Precipitation, ii) Digestion, iii) Filtration & Washing, iv)Drying,v) Ignition & Inceneration, vi) Weighing. 	Apply theoretical knowledge in practical.

Specify Course Outcome: Understand the concept of atomic structure, thermodynamics, phase rule, entropy, nuclear chemistry and theory of gravimetric analysis

Specify Program Outcome: Apply the understanding of structure of atom, thermodynamics, phaserule, entropy, nuclear chemistry and theory of gravimetric analysis in practical exercise.

Signature of Teacher: Prof. S. B. Patwari,

Dharmabad Shikshan Sanstha's

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1)

	Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr.H,M. Kasralikar Department: Chemistry Program: B. Sc. SY Semester –III			
Subject: Chemistry Paper Title: Water Poll		Course Code: SECC-I (A)		
Unit	Unit Name	Торіс	Unit wise Outcome	
Ι	Pollution	Pollution: - Introduction, Definition, Sources & effect of water pollution. Control measures of water pollutions.		
II	Analysis of water pollution:- Theory & Practically	 Physical Parameters a) Temperature b) Electrical Conductance c) Total Suspended Solids d) Total dissolved Solids e) Total Solids f) Oil & Greases. 		
III	Chemical Parameters	 a) PH b) Dissolve Oxygen c) Chemical Oxygen demand d) Bio-Chemical Oxygen demand e) Hardness f) Chloride g) Sulphate 		
IV	Biological aspects.			

Specify Course Outcome:

Specify Program Outcome:

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H. M. Kasralikar

Dharmabad Shikshan Sanstha's

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Dr. N. S. Kaminwa	r
Department: Chemistry	
Subject: Chemistry	

Program: B. Sc. SY Semester –IV CBCS **Course Code**: CH-203 **Paper : VIII**

•	itle: Organic + Inc	organic Chemistry Paper : VIII	
Unit	Unit Name	Торіс	Unit wise Outcome
Ι	Stereochemistr y	1. Introduction 2. Concept and Types of isomerism. (a) Structural isomerism (b) Stereo isomerism. 3. Types of structural isomerisin [Chain, Position, Functional, Metamerism, Tautomerism] 4. Types of Stereoisomerism [Conformational(n-butane) and Configurational] 5. Geometrical isomerism: Cis -Trans and E and Z system of nomenclature. 6. Optical isomerism: a) Concept of asymmetric carbon atom, Chiral centre. b) Dextro and Laevo forms, Racemic mixture. c) Element of symmetry [plane, Centre, and Axis] d) Concept of Diastereoisomers. e) Racemic modification. (with one example) f) Resolution (Concept) (with one example) g) Walden inversion. (with one example) h) Relative Configuration and Absolute configuration.[D,L and R,S notations]	Learn the stereoisomeris m of chiral compounds
Π	Carbohydrates	1.Introduction.2.ClassificationandNomenclature 3.Reactions of Monosaccharide's(Glucose and Fructose) a)Addition reactions b)Ether formation c)Reduction of glucose d)Oxidation of glucose e)Osazone formation withmechanism 4.Open and cyclic structure ofglucose 5.Determination of ring size6.Mutarotation with Mechanism.7.Epimerization.8.Cyclic Structure of D-glucose.(supporting evidence for six member ring)9.Interconvertions: a)Glucose to Fructose. b)Fructose to Glucose.c)Glucose to Mannose. d)Glucose to Arabinose (Ruff Degradation)e)Arabinose to Glucose.Pyranose Structure of Glucose.11.Manufacturing	Know the Classification, and Reactions of carbohydrates.
III	Nitrogen Containing Organic Compounds.	of sucrose (sugar) from sugar cane. A] Aromatic Nitro Compounds. 1. Introduction, Nomenclature, 2. Preparation of Nitrobenzene from benzene 3. Physical and Chemical properties of Nitrobenzene. 4. Electrophilic substitution reactions. 5. Reductions: a) in acidic medium.	Know the Synthesis, and Reactions of Nitrogen Compounds

Image: Second Science S		1		1
V[A] Chemistryof d-Block Elementsa) General Characteristics of d-Block Elements. b) Electronic Configuration of Second & Third Transition Series Elements. c) Comparison of Second & Third Transition Series Elements with first transition series elements. d) Compounds of i)Understand the Characteristics of d-Block Elements	IV	Reagents In Organic	Introduction, Classification, Nomenclature, 2) Methods of preparations of aniline from i) chlorobenzene ii) phenol iii) nitrobenzene iv) from phthalimide 3) Chemical properties. i) Diazotization reaction. ii) Action of carbon disulphide. iii) Action of benzoyl chloride. iv) Formation of Schiff's base. v) Carbylamine reaction. vi)Formation of p-nitroacetanilide 4. Effect of substituent (-NO2, -OCH3, -CH3)on the basicity of aniline. C] Diazomethane 1. Introduction. 2. Methods of preparations i) From N-nitroso-N- methylurethane ii) From nitrous oxide and methyl lithium 3. Reactions of Diazomethane i) Action of heat ii) Reaction with mineral acid iii) Reaction with phenol iv) Reaction with ethanol and ethanamine v) Ring expansion (cyclopentanone to cyclohexanone) D] Urea: 1. Synthesis of urea by a) Wohlers methods and b) From CO2. 2. Reactions: a) Action of heat b) Action of nitrous acid c) Hydrolysis d) Action of thionyl chloride e) Action of acetyl chloride h) Salt formation. A] Osmium Tetraoxide [OsO4] 1. Introduction, Preparation 2. Reactions: a) In the formation of Cis-1,2-diol, b)Acralaldehyde to glyceraldehyde, c) Cis- hydroxylation of maleic acid, d) 9, 10- dihydroxylation of phenanthrene. B] Ozone. [O3] 1. Preparation, 2. Reactions: a) Synthesis of dialdehydes and ketones, b) Synthesis of dialdehydes and hydroxyl aldehydes, c) In degradation of alcohols. C] Selenium Dioxide. [SeO2] 1. Preparations, 2. Reactions: a) Oxidation of reactive methylene group into Carbonyl group. b) In dehydrogenation reactions. c) allylic hydroxylation and oxidation D] Boron Trifluoride. [BF3] 1. Preparation, 2. Reactions: In the formation of: a) acids, b) esters c) diketones,	Applications of Reagents In Organic
V[A] Chemistryof d-Blocka) General Characteristics of d-Block Elements.Understand the Characteristicsd-Block Elementsa) General Characteristics of d-Block Elements.Understand the Characteristicsd-Block Flementsb) Electronic Configuration of Second & Third Transition Series Elements.Characteristics of d- Block Elements with first transition series elements.Understand the Characteristics of d- Block Elements				
Silver & Gold iv) Cadmium & Mercury.	V	Chemistryof d-Block	 a) General Characteristics of d-Block Elements. b) Electronic Configuration of Second & Third Transition Series Elements. c) Comparison of Second & Third Transition Series Elements with first transition series elements. d) Compounds of i) Rhodium & Irridium ii) Palladium & Platinum iii) 	

VI	[B] Chemistry	a) General Characteristics of d-Block Elements.	Know the
	of f-Block	b) Electronic Configuration of Second & Third	Characteristics
	Elements.	Transition Series Elements. c) Comparison of	of d- Block
		Second & Third Transition Series Elements with	Elements
		first transition series elements. d) Compounds of i)	
		Rhodium & Irridium ii) Palladium & Platinum iii)	
		Silver & Gold iv) Cadmium & Mercury.	

Specify Course Outcome: Acquire basic knowledge about stereochemistry, carbohydrates, nitrogen containing compounds and reagents.

Specify Program Outcome: Understand stereochemistry, sugars, nitrogen compounds, reagents.

Signature of Teacher Dr. N. S. Kaminwar

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof. S. B. Patwari

Department: ChemistryProgram: B.Sc.SY Semester-IVSubject: ChemistryCourse Code: CH-204 Paper title: Physical+ Inorganic ChemistryP-IX

Unit	Unit Name	Topic	Unit wise
			Outcome
Ι	Chemical	1.1 Introduction: Rate of reaction, Definition and	Understand the
	Kinetics	units of rate constant, Factors affecting rate of	concept of
		reaction, Order and Molecularity of reaction. 1.2	chemical
		Zero order reaction: Rate expression and	kinetics and
		Characteristics. 1.3 First order reaction: Rate	order of
		expression and Characteristics. 1.4 Pseudounimol -	reaction.
		ecular reactions. 1.5 Second order reaction:	
		Derivation of rate constant for equal and unequal	
		concentrations of the reactants. Characteristics of	
		second order reaction. 1.6 Methods of determina -	
		tion of order of a reaction. 1.7 Collision theory of	
		reaction rates. 1.8 Effect of temperature on reaction	
		rates and Arrhenius equation. 1.9 Numericals on first	
		order eactions, half-life method.	
II	Electrochemis	2.1 Introduction, Conduction of electricity, Types of	Apply the
	try	conductors: electronic and electrolytic. 2.2	concept of
		Conductance of electrolytes: Conductance,	electrochemistr
		Specificresistance, Specific conductance, Equival -	y to learn the
		ent conductance, Molecular conductance and their	phenomenon of
		units. 2.3 Variation of specific and equival -ent	conductance.
		conductance with dilution, Equivalent conductance	
		at infinite dilution. Effect of tempera -ture on	
		conductance. 2.4 Conductivity cell, Cell constant and	
		its determination. 2.5 Strong and weak electrolyte.	
		Arrhenius theory of electrolytic dissociation and its	
		limitations. Debye-Huckel theory of strong	
		electrolytes. Relaxation effect and electrophoretic	
		effect, Debye-Huckel, Onsager's equation and its	
		verification. 2.6 Migra -tion of ions, Transport number. 2.7 Numericals on Specific conductance,	
		Equivalent conductance and cell constant.	
III	Kohlrausch'	3.1 Kohlrausch's law, Applications of Kohlrau -sch's	Evaluate the
111	s law	law: i) Determination of equivalent conductance at	concept of
	5 14 11	infinite dilution of weak electroly -tes. ii)	conductancein
		Determination of degree of dissociation. iii)	various
		Determination of solubility of sparingly soluble salts.	titration.
		iv) Determination of absolute ionic mobility. v)	an a
		Determination of ionic product of water. 3.2	
		-	
		Conductometric titrations: (i) Strong acid against	

			,
		strong base. (ii) Strong acid against weak base (iii)	
		Weak acid against strong base. (iv) Weak acid	
		against weak base. (v) Precipitation titration. 3.3	
***		Advantages of conductometric titrations.	
IV	Photochemist	3.1 Introduction to photochemistry, types of	Analyse the
	ry	chemical reactions, difference between thermal and	photochemical
		photochemical reactions. 3.2 Lambert-Beer Law:	reaction.
		Light absorption by solution, molar extinction	
		coefficient, transmittance, absorbance, optical	
		density. Laws of photochemistry: Grothus-Drapper	
		law, Stark-Einstein law of photochemical	
		equivalence. Quantum yield, experimental	
		determination of quantum yield. High and low	
		quantum yield reactions. Reasons for high and low quantum yield. 3.5 Jablonski diagram with various	
		Processes occurring in the excited state. (internal	
		Qualitative description of Fluorescence,	
		phosphorescence, non-radiative processes	
		Conversion, inter- system crossing). Photosensitized	
		reactions. Chemiluminescence. 3.6 Numericals on	
		quantum yield.	
V	Chemistry of	a) Silicates: Definition, Basic Unit of silicate and	Understand the
•	Non-	classification on the basis of basic unit and their	role of non
	transition	characteristics. b) Zeolite: Definition, preparation,	transition
	elements	classification and applications. Ultramarine.c)	elements in
		Carbide: Definition, classification, preparation,	various fields.
		properties and structure of ionic or salt like carbides	
		(CaC2), Metallic carbide (TiC) and covalent carbides	
		(SiC). d) Fullerene: Preparation, properties, structure	
		and applications.	
VI	Chemistry	a) Inter-halogen compounds: i)Definition preparation	Understand the
	Halogen	and structure of XY, XY3, XY5, and XY7 types of	role of halogen
	compounds	inter-halogen compounds. ii)Pseudo-halogen:	in the synthesis
		Definition, preparation and properties. b)	of various
		luorocarbon: Definition, preparation properties and	compounds.
		uses (Teflon).	
		c) Polyhalides: definition, preparation, properties &	
		structure of ICl2-, & ICl4-d) Oxides of halogens:	
		Preparation, structure & uses of F2O, Cl2O, Cl2O7,	
		& I2O5. e) Oxyacids of halogens: Introduction,	
		oxidation state, structure strength and stability. Basic	
		properties of halogens: I+ and I+3 compounds and	
		their preparation	

Specify Course Outcome: Understand the concept of chemical kinetics, electrochemistry, photochemistry, non transition elements and halogen and with illustration.

Specify Program Outcome: Apply the understanding of chemical kinetics, electrochemistry, Photochemistry, non transition elements and halogen in the welfare of society.

Signature of Teacher

Lai Danadui Shasti Manavidyalaya, Dhai mabad. 451009

Pro-forma for program and course outcomes (2.6.1)

ourse	Code: CH-205, (CC	Program: B. Sc. SY Semester-III & IVSubjectCC III & IV Section- A)P - Xased on P-VI & P-VIII Paper Title: Organic + Inorganic	: Chemistry c Chemistry
Unit	Unit Name	Торіс	Unit wise Outcome
Ι	Part I (Organic Chemistry) Only demonstration	i) Determination of Rf values of O, M and P-nitro aniline. ii) Separation of benzene and water by distillation method.	Learn basics of thin layer chromatograph yand distillation
П	Qualitative analysis	Identification of following organic compounds. (Two from each of the following) a) Acids: Benzoic acid, Phthalic acid, Salicylic acid, Cinnamic acid, o- chloro benzoic acid. b) Base: Aniline, P-nitroaniline, m-nitroaniline, resorcinol, P-toludiene. c) Phenols: Phenol, α -naphthol, β -naphthol, p-cresol, m-nitro phenol. d) Neutral: Naphthalene, Anthracene, Acetanilide, m-dinitrobenzene, Nitrobenzene.	Learn fundamentals of organic qualitative analysis
III	Quantitative analysis: (estimation)any four)	 a) Estimation of glycine by Sorenson's method. b) Estimation of phenol by bromination method. c) Estimation of glucose by iodination method. d) Estimation of unsaturation (cinnamic acid). e) Estimation of saponification value of an oil. f) Estimation of iodine value of an oil 	Learn about estimations
IV	Part II (Inorganic Chemistry)	1 Determine volumetrically the amounts of sodium carbonate and sodium hydroxide present together in the given solution provided 0.1 N HCl solution 2. Determine the percentage of CaCO3 in the chalk sample, provided 1 N Hcl and 0.1N NaOH 3 Estimate the strength of the given sample of KMnO4 Solution in g/lit. Prepare a standard solution of N/10 Mohr's salt or N/10 Sodium Oxalate solution 4 Estimate volumetrically the strength of Ferrous and ferric ion in the given solution provided N/10 KMnO4 Solution 5 Determine the strength in g/lit of each of HCl and HNO3 present together in the given solution. Provided N/10 NaOH and N/20 AgNO3 6 Determination of Nickel using murexide as an indicator (Direct method) 7 Prepare standard solution and estimate the amount of unknown Zn ion concentration 8 To determine the total, permanent	Basics of Volumetric analysis

and temporary hardness of water by complexometric	
method using EDTA.	

Specify Course Outcome: Learn basics of thin layer chromatography, distillation, fundamentals of qualitative analysis of organic compounds, estimation of glycine, phenol, glucose, Cinnamic acid oil, vitamin-C and formaldehyde and basics of Volumetric analysis.

Specify Program Outcome: Understand concept of layer chromatography, distillation, qualitative analysisorganic compounds and estimation of organic compound and Volumetric analysis of compounds.

Signature of Teacher

Pro-forma for program and course outcomes (2.6.1)

Departi Course	ment: Chemist Code: CH-200		ct: Chemistry	
Unit	Unit Name	Topic	Unit wise Outcome	
I	Instrumen tal	 Determine the normality and strength of strong acid (HCl /H2SO4 / HNO3) onductometrically using standard solution of strong base (NaOH / KOH). Determine the normality and strength of weak acid (CH3COOH / HCOOH) conductometrically using standard solution of strong base (NaOH / KOH). To determine the solubility of a sparingly soluble salts(BaSO4 / PbSO4 / AgCl) conductometrically at room temperature. Determine the normality and strength of strong acid (HCl /H2SO4 / HNO3) potentiometrically using standard solution of strong base (NaOH / KOH). Determine redox potential of Fe3+ / Fe2+ / or Sn4+/Sn3+or Ce4+ / Ce3+ system by titrating it with standard K2Cr2 O7 / KMnO4 potentiometrically Verification of Lamberts-Beer's law using KMnO4 / NiSO4 / K2Cr2 O7 / CuSO4 colorimetrically and determine concentration of unknown solution. Determine the concentration of Cu++ ion in given solution, titrating it against std. EDTA Solution by colorimetric measurement. 8. To determine the hydrolysis constant of anilinehydrocloride by pH measurement. 	Understand the role of instrumentation for the accurate determination of concentration of solution.	
Π	Non- Instrumen tal	 To study the effect of addition of electrolyte (KCl / NaCl)on solubility of weak organic acid at room temperature. Determine energy of activation of reaction between KI and K2S2O8 . Determine the parachorof p-dichloro benzene by stalgmometer method. To determine the composition of the given mixture consisting of two miscible liquids, A & B by viscosity measurement. Determine partition coefficient of iodine between carbon tetrachloride and water. Determine the solubility of benzoic acid in water at different temperatures and hence its heat of solution. To study the effect of solute (NaCl / Succinic acid) on the CST of phenol- water system and hence determine 	Apply the practical knowledge of chemistry for the verification of theoretical aspect.	

		amount of solute in given sample of phenol – water composition.	
		8. To find out the enthalpy of neutralization of weak	
		acid/weak base against strong base/strong acid and	
		determine the enthalpy of ionization of weak acid/ weak	
		base.	
		9. To study the kinetics of dissolution of magnesium	
		metal in dil.HCl 10. To study the kinetics of decompo -	
		sition of sodium thiosulphate by a mineral acid	
III	Inorganic	Inorganic Chemistry	Evaluate the theor
	Chemistry	Separation of binary mixtures and estimation of any one	-etical concept of
		by volumetric method: 1. $Cu + + Zn + + 2$. $Ba + + +$	qualitative analy
		Ca++3. Mn + + + Zn+ + 4. Fe + + + Al + + +	-sis in practical.

Specify Course Outcome: Understand the concept of instrumentation, non instrumentation and qualitative analysis for the correct estimation.

Specify Program Outcome: Apply the skill during the instrumentation, non instrumentation and qualitative analysis for the correct estimation.

Name of Teacher: Prof. S. B. Patwari, Dr. H. M. Kasralikar & Dr. N. S. Kaminwar

Dharmabad Shikshan Sanstha's

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr.H,M. KasralikarDepartment: ChemistryProgram: B. Sc. SY Semester –IV

Subject: ChemistryCourse Code: SECC-IIPaper Title: Preparation of Solutions & its standerdisationPaper : SEC II

Unit wise Outcome Learn fundamental concepts of solutionsand it's		
Learn fundamental concepts of solutionsand it's		
fundamental concepts of solutionsand it's		
concepts of solutionsand it's		
solutionsand it's		
concentration		
Understand how		
toexpress		
concentration		
Understand how		
to prepare		
solutions of		
different		
concentrations by		
solving numerical		
Learn how to		
prepare the		
solution of exact		
concentration		

Specify Course Outcome: Familiarize the students with the basic principle of solutions and preparation of solutions of exact concentration expressed in different ways

Specify Program Outcome: Understand basic concepts of solution and different ways for expressing concentration also how to prepare solutions of different concentration from standard solutions.

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr.H. M. Kasralikar

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar

Department: ChemistrySubject: ChemistryCourse

H-301 **Program:** B. Sc. TY Semester-V **P** - XII

Subject: ChemistryCourse Code: CH-301PCourse Name B. Sc. TY, Sem-V Paper Title: Organic + Inorganic Chemistry

Unit	Unit Name	Торіс	Unit wise
			Outcome
Ι	Heterocycl-	Introduction, classification and nomenclature.	Learn the
	ic Compou-	ii) Molecular orbital structures, resonance structures	mechanism of
	nds	and reactivity of furan, pyrrole, thiophene and pyridine.	Electrophilic
		iii) General mechanism of electrophilic substitution	Substitution
		reactions of furan, pyrrole, thiophene & pyridine.	reaction of
		[A] Five-membered heterocycles (1) Furan: (Oxole)	Heterocyclic
		Synthesis from: a) Mucic acid b)Succinaldehyde	Compounds
		Physical Properties 1.1.3 Chemical Properties:	
		a) Electrophilic Substitution reactions: i) Nitration	
		ii) Sulphonation iii) Halogenation iv) Friedel- Craft's	
		acylation v) Gattermann-Koch reaction vi) Gomberg	
		reaction vii) Reaction with n-butyl lithium b)Reduction	
		c) Diel's-Alder reaction (2) Pyrrole : (Azole) 1.2.1	
		Synthesis from: a) Acetylene b) Furan c) Succinimide	
		1.2.2 Physical properties 1.2.3 Chemical properties:	
		a) Electrophilic substitution reactions: i) Nitration	
		ii) Sulphonation iii) Halogenation iv) Friedel-craft	
		acylation v) Gattermann reaction vi) Reimer-Tiemann	
		reaction vii) Coupling reaction b) Reduction c) Ring	
		expansion reaction d) Acidic character (3) Thiophene	
		(Thiole) 1.3.1 Synthesis from: a) Acetylene b) n-butane	
		c) Sodium Succinate 1.3.2 Physical properties	
		1.3.3 Chemical properties a) Electrophilic substitution	
		reactions: i) Nitration ii) Sulphonation iii) Halogenation	
		iv) Friedel- Craft acylation v) Chloromethylation vi)	
		Mercuration vii) Reaction with n-butyl lithium b)	
		Reduction	
II	Six-	(1) Pyridine: (Azine) 2.1.1 Synthesis from: a) Acetylene	Learn the
	membered	b) β -picoline c) Pentamethylenediamine hydrochloride	mechanism of
	heterocycli	2.1.2 Physical properties 2.1.3 Chemical properties: a)	Electrophilic
	с	Electrophilic Substitution reactions: i) Nitration ii)	Substitution
	compounds	Sulphonation iii) Bromination b) Nucleophilic	reaction of
		Substitution reactions: (General mechanism) i) Amina -	Heterocyclic
		tion ii) Reaction with KOH iii) Reaction with n-butyl	Compounds
		lithium c) Reduction d) Oxidation e) Basic Character	
		[C] Condensed heterocyclic compounds: (1) Indole :	
		(Benzopyrrole) Synthesis by : a) Fischer's Indole	
		Synthesis b) Bischler's Indole Synthesis (2) Quinoline:	

		(Dennementiding) South asis hours) Strange South asis h)	
		(Benzopyridine) Synthesis by: a) Skraup Synthesis b)	
III	Synthetic drugsand	Friedlander Synthesis (1) Synthetic drugs: 3.1.1 Introduction: qualities of good drug. 3.1.2 Classification of drugs based on	Know the characteristics
	dyes	therapeutic action:-a) Functional drugs : Antipyretics, Analgesics, Anaesthetics, Antidiabetics, Anti-inflamm - atory, sedatives, hypnotics, tranquillizers) b) Chemothe -rapeutic agents : (Antimalarials, Antibacterials, Anti - fungals, Antituberculars, 3.1.3 Synthesis and uses of the following drugs:a) Paludrine b) Paracetamol c) Sulpha - nilamide d) Aspirin e) Benzocaine f) Isoniazide g) Sulphadiazine h) Tolbutamide (2) Synthetic dyes: 3.2.1 Introduction, qualities of good dye 3.2.2 Classification of dyes based on methods of applications 3.2.3 Colour and chemical constitution: a) Witt's theory b) Armstrong's theory 3.2.4 Synthesis and uses of the following dyes: a) Alizarin d) Methyl- orange b) Diamond black-F e) Congo-Red c) Indigo f) Orange-II	,Classification and synthesis of Drugsand Dyes
IV	Alkaloids, Vitamins and Pesticides	 (1) Alkaloids: 4.1.1 Introduction, occurrence and extraction. 4.1.2 Classification and generalproperties. 4.1.3 Determination of chemical constitution of alkaloids. 4.1.4 Constitution of the following alkaloids. a) Ephedrine: (Synthesis from: 1-Phenyl propane-1, 2-dione) b) Nicotine: (Synthesis from: Nicotinonitrile) (2) Vitamins: 4.2.1 Introduction and classification. 4.2.2 Source, structure and deficiency diseases of the following vitamins: a) Vitamin – A, D, E and K b) Vitamin – B1, B2, B3, B6, B12 and C (3) Pesticides: 4.3.1 Introduction and classification: (Insecticides, Herbicides, Fungicides and Rodenticides) 4.3.2 Synthesis and uses of the following pesticides: a) DDT b) BHC c) 2, 4 – D d) Methoxychlor e) Carbaryl 	Gathering basic knowledge of Alkaloids, Vitaminsand Pesticides
V	Coordinati on Chemistry (Part-I)	d) Monochrotophos 5.1.1 Introduction: addition or Comparison of double salt and coordination compound. 5.1.2 Terminology: complex ion, central metal atom, ligand, types of ligands, coordination number and coordination sphere. 5.1.3 Nomenclature: Rules of nomenclature of coordination compounds, and its applications to nomenclature of simple and bridging complex compounds. 5.1.4 Werner's theory of coordination compound, postulates, applications with reference to 5.1.5 CoCl3.6NH3, CoCl3.5NH3, CoCl3.4NH3, CoCl3.3NH3. Chelating agents and its classification, difference between metal complex and metal chelate complex. 5.1.6 Isomerism: structural isomerism, ionization, hydrate, linkage, coordination isomerism, geometrical isomerism, optical isomerism in 4 and 6 coordination complex. 5.1.7 E. A. N. of metal complexes.	Understand the basic principle andapplication of coordination complexes

VI	The	5.2.1	Introduction	5.2.2	Chelation	Therapy	Know the
	Chemistry	5.2.3C	ancer Treatment	5.2.4 An	ti-arthritis dru	ıgs.	application of
	of Elements	5.2.5 Imaging agents.				elements in	
	in Medicine						Medicine

Specify Course Outcome: Acquire basic knowledge about Heterocyclic Compounds, Synthetic Drugs andDyes, Alkaloids, Vitamins, Pesticides, Co-ordination Chemistry and elements in Medicine.

Specify Program Outcome: Understand Heterocyclic Compounds, Synthetic Drugs and Dyes, Alkaloids, Vitamins, Pesticides, Co-ordination Chemistry and elements in Medicine.

Signature of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar

Dharmabad Shikshan Sanstha's

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof.S. B. Patwari, Dr. H. M. Kasralikar Mr. S. L. Nakkalwar						
Department: Chemistry		Program: B. Sc. TY Semester-V				
Subject: Chemistry	Course Code: CH-302	P - XIII				
Course Name B. Sc. TY, Sei	Course Name B. Sc. TY, Sem-V Paper Title: Physical + Inorganic Chemistry					

Unit	Unit Name	Topic	Unit wise
			Outcome
I	Spectroscopy I	Brief introduction to molecular Spectroscopy. Width and intensity of spectral lines. Factors affecting width and intensity of spectral line. Rotational spectra: Classification of molecules, Rotational spectra of diatomic molecules. (Rigid rotator model) Moment of inertia, energy levels of rigid rotator, selection rule, spacing between spectral lines of diatomic rigid rotator, isotopic effect. Numerical. v ibrational Spectra: Infrared spectrum, simple harmonic oscillator model, energy levels of simple harmonic oscillator, election rule, pure vibrational spectrum, intensity, determination of force constant, qualitative relation between force constant and bond energies. Numerical on force constant.	Understand the instrumentation and theoretical background of spectroscopy.
II	SpectroscopyII	a) Raman spectra: Raman effect, Concept of polarizability, classical and quantum theory of Raman scattering, rotational Raman spectrum of a diatomic molecule. Experimental Raman Spectroscopy. b) electronic spectra: Concept of potential energy curve, Franck-Condon Principle, Types of electronic transistions.	Understandbasic principle of Raman spectroscopy.
III	Chemical kinetics	a) Introduction, Third order reaction with equal concentration of all reactants, characteristics of third order reaction. b) Kinetics of complex reaction: i) Opposing reaction ii) Consecutive reaction c) Kinetics of Photochemical reaction: i) Hydrogen – chlorine reaction ii) Decomposition of HI iii) Dimerization of anthracene.	Applythepreviousknowledgeofchemicalkineticsinvarious reaction
IV	Distribution Law:	a) Introduction, Nernst Distribution law, Solubility and distribution law, Limitations of law. b) Association and dissociation of solute in solvent. c) Henry's law. d)Determination of equilibrium constant from distribution coefficient. e) Extraction of solvent. f) Liquid -liquid chromatography. g) Applications of distribution law. h) Numerical on distribution law	Apply the law of dissociation constant in various phases.
V	organometal -	a) Definition b) Nomenclature and classification of	Understand the
	lic compounds	organometallic compounds c) Preparation,	role of metal ion

		properties, bonding and application of alkyl and aryls of Li, Al, Sn, Ti.	in organo metallic comps.		
VI	Metal	a. Definition, types 1) Mononuclear carbonyl,	I		
	carbonyls	characteristics and examples; 2) Polynuclear			
		carbonyl, characteristics and examples. b.	carbon bond in		
		Preparation properties and structure of nickel tetra	metal carbonyl.		
		carbonyl. c. Nature of metal carbon bond in metal			
		carbonyl and their evidences. d. Structure of			
		Fe2(CO) 9, Fe3(CO) 12, Ir4 (CO) 12, Co2 (CO) 8.			

Specify Course Outcome: Understand the basic concept of spectroscopy, rate of reaction in various chemical reaction, distribution law and metal ion in organo metallic compounds.

Specify Program Outcome: Understand the concepts of molecular Spectroscopy and its applications. Analyze Rotational, Vibrational and Raman, Spectra. Interpret the theoretical and experimental methods of chemical kinetics. Know the theory and application of Distribution law. Explain the Nomenclature, classification and application of Organometallic Compounds. Illustrate the classification and application of Metal Carbonyls.

Name of Teacher: Prof.S. B. Patwari, Dr. H. M. Kasralikar Mr. S. L. Nakkalwar

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H. M. Kasralikar			
Department: Chemistry	Program: B. Sc. TY Semester –V		
Subject: Chemistry	Course Code: SECC-III		
Paper Title: Computer Application in Chemistr	v Paper: SEC III		

-		r Application in Chemistry Paper: SEC I			
Unit	Unit Name	Торіс	Unit wise		
			Outcome		
Ι	Use of	ISIS draw, Chem drawand Chem sketch.	Understand the		
	software	For drawing the structures, elemental (CHN)	role of software for		
		analysis, determination of molecular mass,	the elucidation of		
		IUPAC name and prediction of	structure of		
		spectral data NMR and MASS.	compound.		
II	Biological	Biological activity and Toxicity evaluation of	Understand the		
	activity	organic compounds using software: Evaluation	mode of action		
	uctivity	of toxicity risk assessment of organic			
		compounds using online software. Prediction of	and mechanism of		
		different biological activities using online	biologically active		
		software.	compound.		
TTT			-		
III	Use of Excel	Functions and formulas: Sum, mean, average,	Understand the		
	in Chemistry	power etc. Understanding formulas, the cell and	use of excel in		
		the formula bar, the formula in action, copying	chemistry for		
		formulas, copying and pasting a formula and	ploting the graph		
		complex formula. b) Excel chart and data	and analysis.		
		analysis: Visual representation of the data	and analysis.		
		through excel graph, plotting and X-Y data set,			
		create calibration curve, format the view graph,			
		add trendline, equation of line and R- square			
		value, determine the slope of a line, scale			
		adjustment, examples, renaming the chart and			
		worksheet, common charting errors, add a chart			
		title.Add regrations and equation to graph,			
		regration analysis, run the regration and			
		interpreting regration results.			
L			l		

Specify Course Outcome: Understand the students for the use of Software, Excel, analysis of Soil and Fuel. Able to know the use of software and Excel in Chemistry. Grasp the concept of Quality Assurance and Quality Control. Illustrate the Physical and Chemical analysis of Soil and fuel. Be able to evaluate biological activity and toxicity of organic compounds using software's.

Specify Program Outcome: To train the students for the use of Software, Excel, analysis of Soil and Fuel. Able to know the use of software and Excel in Chemistry. Grasp the concept of Quality Assurance and Quality Control. Illustrate the Physical and Chemical analysis of Soil and fuel. Be able to evaluate Biological activity and toxicity of organic compounds using software's.

Signature of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr.H,M. Kasralikar

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar

Department: ChemistryProgram: B. Sc. TY Semester-VISubject: ChemistryCourse Code: CH-303P - XIVCourse Name B Sc. TY Sem-VI Paper Title: Organic + Inorganic Chemistry

	se Name B. Sc. TY, Sem-VI Paper Title: Organic + Inorganic Chemistry			
Unit	Unit Name	Торіс	Unit wise	
			Outcome	
Ι	Spectrosco	i) Introduction, Electromagnetic radiations;	learn the basic	
	picMethods	Characteristics of EMR: - a) Wave length b) Wave	principle and	
	-	number c) Frequency d) Energy of EMR ii)	termsused in	
		Electromagnetic spectrum; Meaning of Spectroscopy,	UV, IR & NMR	
		types of Spectroscopy and advantages of pectroscopic	Spectroscopy	
		methods.(A) U. V. Spectroscopy:1.1.1 Introduction.	Speedooropy	
		1.1.2 Absorption of U.V.radiations : Beer-Lambert Law		
		and Molar Absorption.1.1.3 Types of Electronic		
		Transitions.1.1.4 Terms used in U.V.Spectroscopy :		
		Chromophore, Auxochrome, Bathochromic. Shift,		
		-		
		Hypsochromic Shift, Hypochromic and Hyperchromic		
		effects. 1.1.5 Effect of conjugation on position of U.V.		
		and Visible bands. 1.1.6 Calculation of λ max by		
		Woodward – Fieser rules for conjugated dienes and		
		enones. 1.1.7 Spectral problems based on U.V.		
		(B) I.R. Spectroscopy:1.2.1 Introduction 1.2.2 Principle		
		of IR Spectroscopy.1.2.3 Fundamental Modes and types		
		of Vibrations. Hooke's Law. 1.2.4 Conditions for		
		absorption of IR-radiations. 1.2.5 IR Spectrum :		
		Functional group region and Fingerprint region. 1.2.6		
		Characteristic absorption of various functional groups.		
		1.2.7 Interpretation of IR spectra of following organic		
		compounds a) ethane b) ethane c) ethyne d) benzene e)		
		1-propanol f) 2-propanol g)t-butyl alcohol h) phenol i)		
		acetone j)acetophenone k) acetaldehyde l) benzaldehyde		
		m) benzoic acid n) methyl benzoate o) phenyl cyanide.		
II	NMR –	2.1 Introduction 2.2 Principle of NMR Spectroscopy	learn the basic	
	Spectrosco	2.3 Magnetic and non-magnetic nuclei 2.4 PMR-	principle and	
	ру	Spectroscopy :- Spinning nuclei, magnetic moment and	termsused in	
		magnetic field, precessional motion, energy states for	UV, IR & NMR	
		proton in magnetic field (Orientations) and nuclear	Spectroscopy	
		resonance. 2.5 Equivalent and non- equivalent protons		
		2.6 Number of absorption singuls in the following		
		compounds : a) Acetone b) Cyclobutane c) Methanol d)		
		Ethylbenzene e) Ethyamine f) Mesitylene g) Diethyl -		
		ether 2.7 Shielding and deshielding effects : (Example		
L	1			

			ı
	Amino	of Acetylene and Benzene) 2.8 Chemical shift, measurement of chemical shift by delta scale and tau scale 2.9 TMS as reference, Advantages of TMS. 2.10 Peak area (integration) & spin-spin Splitting (n+1) rule 2.11 Definition of coupling constant : (J- values) of first order coupling 2.12 Interpretation of PMR Spectra of following compounds : a) Ethyl bromide b) Ethyl alcohol c) Acetaldehyde d) 1,1,2-tribromo ethane e) Ethyl acetate f) Toluene g) Acetophenone h) Ethylamine i) Acetic acid j) Benzoic acid (B) Problems pertaining to the structure elucidation of simple organic compounds using PMR- Spectrosopic data (Supporting IR and UV data to be given) a) n-propyl alcohol b) iso-propyl alcohol c) tertt. Butyl alcohol d) acetic acid e) ethyl amine f) ethyl cyanide g) ethyl methyl ketone h) ethyl acetate i) ethyl benzene j) phenyl acetaldehyde k) phenol l) ethyl methyl ether m) ethylene glycol n) propanamide o) propanaldehyde.	Acquire the
III	Amino acidsand	(A) Amino Acids: 3.1.1 Introduction & classification (acidic, basic and netural). 3.1.2 Dipolar nature of amino	Acquire the fundamental
	Peptides	acids : Zwitter ion, iso electric point. 3.1.3 Methods of	knowledge of
		Preparation of α - amino acids : a) From α -halo acids b) Py Cabriel's Phthalimida Synthesis Chemical Properties	classification
		By Gabriel's Phthalimide Synthesis Chemical Properties of α -amino acids : a) Reactions due to -NH2 group b)	and Synthesis of AminoAcid and
		Reactions due to – COOH group c) By Strecker's	Peptides
		Synthesis c) Reactions due to both -NH2 and -COOH	
		groups Reagents used for identification of amino acids (B) Peptides: Introduction, classification and nomenclatureN-terminus and c-terminus protecting agents Synthesis of peptides from amino acids : (di- & tri-) a) By protecting – NH2 group (Using	
		carbobenzoxyl chloride) b) By protecting – COOH	
		group (Using benzyl alcohol) 3.2.4 Use of DCC	
		(Dicyclohexyl Carbodiimide) as reagent for peptide bond formation.	
IV	Molecular	4.2.1 Introduction, classification of rea rrangements:	Describe the
	Rearrange	On the basis of migratory group (a)Electrophilic	types of
	ments	rearrangement (Pinacole-Pinacolone rearrangement)	Rearrangement
		(b) Nucleophilic rearrangement (ex. Favroskii	
		rearrangement) (c) Free Radical rearrangement (ex. Photo Fries rearrangement) (d) Aromatic	
		rearrangement (ex Stevens rearrangement)	
V	Coordinati	5.1.1) Valence bond theory of coordination	Postulates and
	on theory	compounds: Postulates, inner orbital and outerorbital	limitations of
	(Part-II)	complexes of coordination number 4 and 6. Limitations of VBT. 5.1.2) Crystal field theory: Shape of d-orbital's,	VBTand CFT
		postulates, splitting of d-orbital in octahedral complexes,	
		tetrahedral complexes, tetragonal and square	
		planarcomplex. Definition of CFSE, calculations of	
		CFSE for octahedral and tetrahedralcomplexes. 5.1.3)	
		Factors affecting 10 Dq or magnitude of crystal field	

	 splitting : Nature of ligand, oxidation state of metal ion, size of d orbital, geometry of complexes. 5.1.4) Applications of CFT. 5.1.5) John teller effect in octahedral complexes of Cu⁺⁺. 5.1.6) Limitations of CFT. 	
Electronic Spectra of Transition Metal complexes	5.2.1) Types of electronic transition 5.2.2) Selection rule for d-d transistion 5.2.3) Spectroscopic ground state and spectro-chemical series 5.2.4) Orgel energy level diagram for d 1 and d 9 states 5.2.5) Discussion of electronic spectrum of [Ti (H2O)6] ³⁺ complex ion	types of electronic

Specify Course Outcome: Familiarize the students with the concept and principle of Spectroscopy, Amino Acids, Peptides, Molecular Rearrangements, Co-ordination theory and Electronic Spectra of Metal Complexes

Specify Program Outcome: Understand concept of Spectroscopy, Amino Acids, Peptides, MolecularRearrangements, Co-ordination theory and Electronic Spectra.

Signature of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar

-----**Pro-forma for program and course outcomes (2.6.1)** _____

Name of Teacher: Prof.S. B. Patwari, Dr. H. M. Kasralikar Mr. S. L. Nakkalwar **Department:** Chemistry

Program: B. Sc. TY Semester-V

P - XVI

Subject: Chemistry Course Code: CH-304 Course Name B. Sc. TY, Sem-VI Paper Title: Physical + Inorganic Chemistry

Unit	Unit Name	Topic	Unit wise
			Outcome
Ι	Electrochem istry	i) Introduction, concept of electrode potential , single electrode potential, standard electrode potential , oxidization and reduction potential ii) Electrochemical cells, electrolytic and Galvanic cells, reversible and irreversible cells, conventional representation of electrochemical cells. EMF of cell , SHE. iii) Reference electrodes , indicator electrodes , calomel electrodes, Relation between EMF and ΔG , ΔH , ΔS iv) Nernst equation, application of Nernst equation to oxidation half cell and reduction half cell. v) Electrolyte concentration cell, Concentration cell with and without transport. Application of EMF measurement in determination of pH by using i) Quinhydroneelectrode b) Glass electrode.	Familiarize the students with the concept and principle electrochemistry
II	Thermodyn amics I	 i) Numerical on Nernst Equation. a) Introduction b) Work function and free energy function(G): Helmholtz Function (A) or work function, Change of work function (A) at constant temperature , Gibbs' free energy function, relation between G and A, change of G at constant temperature, variation of work function with temperature and volume, variation of free energy function with temperature and pressure. The Gibb's-Helmholtz equation. a)The Nernst heat theorem. Third law of thermodynamics. b) Thermodynamics of open system: partial molar properties; concept of chemical potential, partial molar free energy. Gibb's-Duhem equation. Variation of chemical potential with temperature and pressure. Chemical potential in case of a system of ideal gases. 	Familiarize the students with the concept and principle of thermodynamics.
III	Therrmo dynami cs II	 Thermodynamic derivation of law of mass action. a) Relation between ΔG0 and KP, relation between KP, KC and KX. b) Vant-Hoff's reaction isochore. Integrated form of Vant-Hoff's equation. c) Clausius-Clapeyron equation and its applications. 	

		d) Numerical on Integrated form of Vant-Hoff's equation.	
IV	Magneto chemistry and magnetic properties of substance	 a) Introduction, Magnetic susceptibility, Specific susceptibility, unit of measurement. b) Types of substances: Paramagnetic, diamagnetic and ferromagnetic. c)Effect of temperature on Paramagnetic, diamagnetic, ferromagnetic substances. d) Measurement of magnetic susceptibility: Gouy's method. 	Familiarize the students with the concept and principle of Magneto chemistry and magnetic properties of substance.
V	Bioinorgani cChemistry	Essential and trace elements in biological processes Metalloporphyrin with special reference to hemoglobin and myoglobin Biological role of alkali and alkaline earth metal ionsNitrogen fixation	Familiarize the students with the concept and principle of bioinorganic chemistry and role of metal ion in biological systems.
VI	Metal cluster	Boranes , Carboranes, Metalloboranes, Metallocarboranes	Familiarize the students with the concept of metal clusters.

Specify Course Outcome: Understand the basic concept of electrochemistry, thermodynamics, magnetometry, bioinorganic chemistry and metal cluster.

Specify Program Outcome: Basic concepts of electrochemistry and its applications. Understanding the Nernst heat theorem and the Thermodynamics open system Know the Vant-Hoff's Reaction Osochore and numerical on it. Explain the types of magnetic substances and effect of temperature on it. Biological role of alkali and alkaline earth metal ions. Describe the structures and functions of Metal Cluster

Name of Teacher: Prof.S. B. Patwari, Dr. H. M. Kasralikar Mr. S. L. Nakkalwar

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr.H,M. Kasralikar			
Department: Chemistry	Program: B. Sc. TY Semester -VI		
Subject: Chemistry	Course Code: SECC-IV		
Paper Title: Spectroscopic Techniques a	and Cosmetic Preparation Paper : SEC IV		

Unit	Unit Name	Торіс	Unit wise
			Outcome
Ι	Instruments in	Instrumentation: Study of UV, IR, NMR and	Learn the basic
	spectroscopy	Massspectroscopy	principle and terms
			used in UV, IR &
			NMR Spectroscopy
II	Determination	Hydrocarbons, unsaturated hydrocarbons,	Be able to
	of structures of	alcohols, amines, aldehydes, ketones,	determine the
	organic	carboxylic acids and esters, acid halides,	structure by using
	compounds by	amides and anhydrides.	Spectra
	using UV, IR,		_
	NMR and		
	Mass spectra		
III	Preparation of	Preparation of talcum powder	Train the students
	cosmetics	Preparation of shampoo	for the preparation
		Preparation of face cream	of various
		Preparation of nail polish and nail polish	cosmetics

Specify Course Outcome: Understanding of the basic concept of Spectroscopic Techniques, and cosmeticspreparations.

Specify Program Outcome: Able to determine the structure of organic molecules using spectroscopictechnique and prepare cosmetics.

Signature of Teacher Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr.H,M. Kasralikar

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof.S. B. Patwari, Dr. N. S. KaminwarDr. H. M. Kasralikar Mr. S. L. Nakkalwar **Department:** Chemistry Program: B. Sc. TY Semester-V & VI Subject: Chemistry Course Code: CH-305 **P** - XVI Course Name B. Sc. TY, Sem-V &VI **Paper Title:** Organic + Inorganic Chemistry P-XVI (Laboratory Course – IV (CH-305) Unit Unit Name Topic Unit wise Outcome I Separation of organic binary mixture containing two Organic Know the qualitative solid components (Using NaHCO3, NaOH and HCl) Organic analysis of qualitative and analysis (both/one) components with preparation one derivative of each. analysis At least one mixture from each of the following types should be given: a) Acid + Phenol b) Acid + Base c) Acid + Neutral d) Phenol + Base e) Phenol + Neutral f) Base + Neutral g) Neutral+Neutral Following compounds should be used for preparation of mixtures: A] Acids : Salicylic acid, Phenyl acetic acid, o-Chlorobenzoic acid, Succinic acid, phthalic acid, cinnamic acid. Benzoic acid and m-cholorobenzoic acid. B] Phenols : α -naphthol, β -naphthol, resorcinol, pnitro phenol, m-nitro phenol and hydroquinone, C] Bases : o-nitroaniline, m-nitroaniline, p-nitroaniline, panisidine. diphenylamine, p-toluidine and pchloroaniline D] Neutrals : Acetanilide, Anthracene, Benzamide, Benzophenone, Biphenyl, Naphthalene, m-Dinitrobenzene, p-Dichloro benzene and Thiourea. Π Organic a) Acetylation : Preparation of Aspirin from salicylic Learn the Preparatio Organic acid OR Preparation of β -naphthyl acetate from β -naphthol preparations n Electrophilic substitution : Preparation of pb) nitroacetanilide from acetanilide (Nitration) c) Preparation of 2, 4, 6 - Tribromoaniline from aniline(Bromination) OR d) Preparation of p-bromo acetanilide from acetanilide (Bromination) e) Diazotisation : Preparation of Methylorange from sulphanilic acid (Coupling)

		 OR e) Osazone formation : Preparation of Glucosazone from Glucose f) Amide Formation : Preparation of Benzamide from benzoic acid Hydrolysis : Preparation of p-nitroaniline from p-nitroacetanilide g) Reduction : Preparation of m-nitroaniline from m-Dinitrobenzene 	
		h) Oxidation : Preparation of Benzoic acid from Toluenei) Polymerisation : Preparation of phenol formaldehyde	
III	Only demonstrat ions	 resin a) Extraction of clove oil from crushed cloves by steam distillation. b) Separation of a mixture of methyl orange and methylene blue by column chromatography c) Separation of a mixture of amino acids by ascending paper chromatography. d) Separation of various pigments in the extract of spinach leaves by TLC. 	Understand the chromatographic techniques
IV	Gravimetri c estimations	 Gravimetric estimation of Iron as Fe2O3. Gravimetric estimation of Ba as BaSO4 Gravimetric estimation of Nickel as Ni(DMG)2. Gravimetric estimation of Aluminium as Al(Oxinate)3. Gravimetric estimation of zinc as ZnO Gravimetric estimation of Chloride as AgCl 	Understand the Gravimetric estimations

Specify Course Outcome: Familiarize the students with the Organic qualitative analysis, organic preparations, chromatographic techniques and gravimetric estimations.

Specify Program Outcome: Understand concept of Organic qualitative analysis, organic preparations, chromatographic techniques and gravimetric estimations.

Pro-forma for program and course outcomes (2.6.1)

Name of Teacher: Prof.S. B. Patwari, Dr. N. S. Kaminwar, Dr. H. M. Kasralikar Mr. S. L. Nakkalwar

Department: Chemistry **Subject**: Chemistry

Program: B. Sc. TY Semester-V & VI P - XVII

Course Name B. Sc. TY, Sem-V &VI

Paper Title: Physical + Inorganic Chemistry P-XVII (Laboratory Course – V (CH-305)

Course Code: CH-306

Unit	Unit Name	ame Topic Unit wise		
Omt		Topic	Outcome	
Ι	Instrument	1. Determine the normality and strength of evalie acid		
1	Instrument al	1. Determine the normality and strength of oxalic acid		
	ai	conductometrically using standard solution of strong		
		base (NaOH/KOH).	instrumentation	
		2. Determine the concentration of KCl solution by	for the accurate	
		titrating it with standard solution of AgNO3	determination of	
		conductometrically.	concentration of	
		3. Determine the equivalent conductance of a strong	solution.	
		electrolyte at several concentrations and hence verify		
		the Onsager's equation.		
		4. Determine the normality and strength of acids in		
		mixture [strong acidm(HCl/HNO3) and weak acid		
		(CH3COOH/HCOOH)] potentiomrtrically using		
		standard solution of strong base(NaOH/KOH).		
		5. Determine the dissociation constant of a weak acid		
		(CH3COOH/HCOOH) potentiometrically using		
		standard solution of strong base (NaOH/KOH).		
		6. Determination of empirical formula of a complex		
		between Fe+3 and 5-sulphosalicylic acid by Job's		
		method colorimetrically.		
		7. Determination of dissociation constant of an organic		
		acid (CH3COOH) using various buffers (CH3COOH		
		+ CH3COONa) pH metrically.		
		8. To study inversion of cane sugar bypolarimetrically.		
II	Non-	Non-Instrumental	Apply the	
	Instrument	1. Determine the rate constant of the reaction between	practical	
	al	potassium persulphate and potassium iodide having	knowledge of	
		equal concentrations of reacting species (a=b).	chemistry for the	
		2. Determine energy of activation of hydrolysis of an	verification of	
		ester by acid/base.	theoretical	
		3. Investigate the reaction between bromic acid and	aspect.	
		hdroiodic acid.	*	
		4. Determine molecular weight of non volatile solute		
		by Rast method / Beckomann's freezing point method.		
		5. Determine enthalpy change of neutralization of a		
		strong acid by a strong base.		

		7. Determine interfacial tension between immiscible liquids, benzene and water by stalagmometer.		
		Determine molecular weight of a polymer by viscosity		
		measurement.		
		6. Separation of mixture of o- and p-nitro anilines on		
		an alumina column.		
III	(Inorganic	1. Inorganic preparations and estimation of metal ion.	Evaluate	the
	Chemistry)	a) [Cu(NH3)4]SO4	theoretical	
		b) [Ni(NH3)6]Cl2	concept	of
		c) CoCl3.4NH3	synthesis	of
		d) Sodium trioxalato ferrate	metal compl	exes
		e) Hg[Co(SCN)4].	in practical.	
		f) Mohr's salt, [FeSO4(NH4)2SO4].6H2O24		

Specify Course Outcome: Understand the concept of instrumentation, non-instrumentation and qualitative analysis for the correct estimation.

Specify Program Outcome: Apply the skill during the instrumentation, non-instrumentation and qualitative analysis for the correct estimation.

Name of Teacher: Prof. S. B. Patwari, Dr. N. S. Kaminwar, Dr. H. M. Kasralikar, Mr. S. L.

Nakkalwar