

Dharmabad Shikshan Sanstha's

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1) Academic year-2022-23

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H, M. Kasralikar

Department: Chemistry

Subject: Chemistry

Program: B. Sc. FY Semester –I CBCS

Course Code: CCCI

Paper : I

Paper Title: Organic + Inorganic Chemistry

Unit Unit Name Topic Unit wise Outcome Unit Nomenclatu-01) Functional groups and types of organic Consolidate & re of Organic compounds, Basic rules of IUPAC nomenclature, Recall Ι Compounds Nomenclature of mono- and bi-functional compounds formulae & on the basis of priority order of the following classes Names of of compounds: alkanes, alkynes, haloalkanes, organic alcohols, ethers, aldehvdes, ketones, carboxyclic compounds. acids, carboxylic acid derivatives (acid halides, esters, anhydrides, amides), amines; Nomenclature of aromatic compounds: mono-, di-. and polysubstitutedbenzene (with not more than two functional groups), Unit **Basic Concepts** Basic terms: Substrate and Reagents, types of Student Π In Organic reagents (Electrophilic and Nucleophilic).Notation of Should learn arrows: curved arrow, Half headed arrow, double Chemistry the basic straight Bond fission: concepts of headed arrow, arrow. Homolytic heterolytic fission. Reaction organic and intermediates: Carbocation, Carbanion, Free radical, chemistry (Introduction, structure & Stability), carbene, nitrene & benzyne (only introduction). Electron mobility: Inductive effect (effect on acidic strength of alpha substituted acetic acid and α -chloroacetic acid), Mesomeric effect (Aniline and Nitrobenzene), Hyperconjugation (toluene). Unit Alkanes, To understand 3.1 Alkanes: Introduction, Preparation of alkanes -III Alkenes and the basic from a) Hydrolysis of Grignard reagent b) Kolbes Alkynes concepts and svnthesis. Chemical reaction: a) Pyrrolysis different aliphatic aromatization. 3.2 Alkenes: (mechanism), b) hydracarbons. Introduction, Preparation methods a) But-1-ene from but-1-yne b) But-2-ene from butan-2-ol. Chemical reactions with mechanism: a) Electrophilic addition

	1	ध्यमांबाद, जि. लांदेह	
		of Br ₂ to ethene b) Electrophilic addition of HBr to	
		propene C) Free radical addition of HBr to propene	
		(Peroxide effect). 3.3 Alkynes: Introduction,	
		Preparation of ethyne from a) Iodoform, b)Hydrolysis	
		of calcium carbide. Chemical reactions: Electrophilic	
		addition of HBr and Br_2 to ethyne (with mechanism).	
IV	Cycloalkanes,	4.1 Cycloalkanes: Introduction, Preparation of	To know
	Cycoloalkenes	cycloalkanes from a)Adipic acid b)Aromatic	about the
	and Dienes	hydrocarbon. Baeyer strain theory and Saches Mohr	cycloalkanes,
		theory. Ring opening reaction with H_2 and HI .	
			cycloalkenes
		4.2 Cycloalkenes: Introduction, preparation methods:	and deine, and
		a)Dehydration of cyclohexanol, b)	their chemical
		Dehydrohalogenation of halocyclohexane. Chemical	properties.
		reactions: a) Epoxidation of cyclohexene, b) Allylic	
		halogenations. 4.2 Dienes: Introduction, classification	
		& Resonance structures. Preparation methods of 1,3-	
		butadiene from- a) 1,4-dibromobutane, b)1,4-	
		butanediol.Chemical reactions: a) addition of Br2 and	
		HBr to 1,3-butadiene, b) addition of ethene to 1,3-	
		butadiene (Diel's- Alder reaction).	
		butadiene (Dici s- Alder reaction).	
IV	Periodic	Part – II	17 .1
IV	Periodic Table and		Know the
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form	importance of
IV	Table and	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity,	importance of periodic table
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks.	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block	importance of periodic table
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors affecting ionization energy. Variation of ionization	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors affecting ionization energy. Variation of ionization energy along a period and in a group. Applications of	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors affecting ionization energy. Variation of ionization energy along a period and in a group. Applications of ionization energy to chemical behavior of an element.	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors affecting ionization energy. Variation of ionization energy along a period and in a group. Applications of ionization energy to chemical behavior of an element. c) Electron Affinity: Definition and Explanation,	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors affecting ionization energy. Variation of ionization energy along a period and in a group. Applications of ionization energy to chemical behavior of an element. c) Electron Affinity: Definition and Explanation, Successive electron affinity, Factors affecting	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors affecting ionization energy. Variation of ionization energy along a period and in a group. Applications of ionization energy to chemical behavior of an element. c) Electron Affinity: Definition and Explanation,	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors affecting ionization energy. Variation of ionization energy along a period and in a group. Applications of ionization energy to chemical behavior of an element. c) Electron Affinity: Definition and Explanation, Successive electron affinity, Factors affecting electron affinity. Variation of electron affinity to chemical behavior of an element.	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors affecting ionization energy. Variation of ionization energy along a period and in a group. Applications of ionization energy to chemical behavior of an element. c) Electron Affinity: Definition and Explanation, Successive electron affinity, Factors affecting electron affinity. Variation of electron affinity along a period and in a group.Applications of electron affinity to chemical behavior of an element. Difference between ionizationenergy and electron	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors affecting ionization energy. Variation of ionization energy along a period and in a group. Applications of ionization energy to chemical behavior of an element. c) Electron Affinity: Definition and Explanation, Successive electron affinity, Factors affecting electron affinity. Variation of electron affinity along a period and in a group.Applications of electron affinity to chemical behavior of an element. Difference between ionizationenergy and electron affinity. d) Electronegativity: Definition and	importance of periodic table & properties
IV	Table and Periodic	Part – II Inorganic Chemistry A] Periodic Table: Modern periodic law, Long form of the periodic table, Sketch, Cause of periodicity, Division of elements in to s, p, d, and f blocks. General characteristics of s, p, d and f block elements.B] Periodic properties: a) Atomic and Ionic size: Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.b) Ionization Energy: Definition and Explanation, Successive ionization energy, Factors affecting ionization energy. Variation of ionization energy along a period and in a group. Applications of ionization energy to chemical behavior of an element. c) Electron Affinity: Definition and Explanation, Successive electron affinity, Factors affecting electron affinity. Variation of electron affinity along a period and in a group.Applications of electron affinity to chemical behavior of an element. Difference between ionizationenergy and electron	importance of periodic table & properties

	group.Pauling's approach of electronegativity.			
	Calculations of electronegativity by Pauling's method			
	(Numerical), Mulliken,s approach. Applications of			
	electronegativity to bond properties such as percent			
	ioniccharacter, bond length, bond angle.			
loble Gas Chemistry	a) Position in the Periodic table b) Electronic configuration c) Compounds of inert gases, under excited condition, through coordination, by physical trapping (Clathrates). d) Fluorides of xenon : XeF2 , XeF4 and XeF6 preparation, properties and structures.	electronic configuration, properties of		

Specify Course Outcome: Acquire basic concepts such as formulae, nomenclature, reactions of organic compounds. Student learns some exceptional electronic configuration, trends and periodicity in related to properties of elements.

Specify Program Outcome: Creating awareness among students about importance, applications, classification, preparations of organic and inorganic compounds.

Class stars of Too show	D. N.C. V.	M. C. I. Malalashara	D. II M V
Signature of Teacher	Dr. N. S. Kaminwar	MIR. S. L. Nakkaiwar	Dr. H. M. Kasralikar

Dharmabad Shikshan Sanstha's

Lal Bahadur Shastri Mahavidyalaya, Dharmabad. 431809

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

Name of Teacher: Prof. S. B. Patwari, Mr. S. L. Nakkalwar & Dr. H.M. Kasralikar

Department: Chemistry

Program: B. Sc. FY Semester -I CBCS

Course Code: CH-102,

Paper Title: Physical + Inorganic Chemistry

Paper: II

Subject: Chemistry

Uni	Unit Name	Торіс	Unit wise
t			Outcome
I	Mathematical Concept and SI Units	 (A) Mathematical concept: 1.1 Logarithm: Rules of logarithm, Characteristic and Mantissa, Change of sign and base, Numerical problems. 1.2 Definition of pH and pOH, Relation between pH and POH, Numerical Problems based on PH and POH. 1.3 Graphical representation: Rules for drawing graph, coordinates etc., Equation of straight lines, slope and intercept and Numerical Problems. 1.4 Derivative: Rules of differentiation, partial differentiation, Algebraic, logarithmic and exponential functions. 1.5 Integration: - Rules of integration, Algebraic and exponential functions. 1.6 Permutation, combinations and Probability, Numerical Problems. 1.7 International systems of units, derived units, subsidiary units, prefixes used in SI units, internal conversions of these units. 	Rules of logarithm, drawing graph, Derivatives, Integration, different mathematical concept and SI units, and their use in solving numerical.
II	Surface Chemistry	 2.1Introduction, Adsorption, mechanism of adsorption, factors affecting adsorption. 2.2 Difference between adsorption and absorption. 2.3 Types of adsorption: Physical adsorption and chemical adsorption. 2.4 Adsorption of gaseous by solids. Adsorption isotherm, Types of adsorption isotherm: i) Freundlich adsorption isotherm ii) Langmuir adsorption isotherm (Derivation). 	Learning surface phenomena at heterogeneous surfaces.
III	Gaseous	3.1 Kinetic molecular theory of gases -Postulates of	learn the basic

		दानाचार प्रियोग साहस्या इ.माबाद, लि. लोदेह	
IV	Chemistry Solid State	 kinetic molecular theory of gases. Derivation of kinetic gas equation. Ideal and non-ideal gases. 3.2 Deviation of gases from Ideal behavior and Compressibility factor (Z). Derivation of Van der Waal's constants. 3.3 Critical phenomenon-The P-V isotherms of Carbon dioxide, application of Vander Waals' equation to the isotherms of Carbon dioxide, relation between critical constants and Van der Waals constants 3.4 Liquefaction of gases, Linde's method, Claude's method. 3.5 Molecular velocities-Root mean square, average and ii) Most probable velocities, Relation between molecular velocities 3.6 Numerical on Vander Waals constants and Critical constants, Root mean square velocities. 	gas phase, Kinetic molecular theory, critical phenomenon, liquefaction and molecular velocities
IV	Solid State	 4.1 Introduction, Characteristics of solids, space lattice and Unit Cell. 4.2 Laws of crystallography :- (i) Law of constancy of interfacial angles, (ii) Law of symmetry, Symmetry elements in crystals and (iii) Law of rational indices. 4.3 Weiss indices and Miller indices, Determination of Miller indices. Numerical on Miller indices 4.4 Cubic Unit cells and types of cubic unit cells, spacing of lattice planes. 4.5 X-rays crystallography, Derivation of Bragg's equation. Experimental methods- The Rotating Crystal method and The Powder method. 4.6 Determination of Bragg's equation. 	Impart knowledge about solid phase, crystallography and some crystal structure
V	S-Block elements	General characteristics of S-block elements Variation in properties of S-block elements, atomic radii , ionization potential, colour of flame, reducing property and metallic property, diagonal relationship between Li and Mg, Points of difference between Li and other alkali metals. General study of hydrides of IA and IIA group. General studies of Oxides IA and IIA group, Basic strength of hydroxides of alkali and alkaline earth metals , Carbonates and bicarbonates of alkali and alkaline earth metals. Complexes of alkali metals with salicylaldehyde, acetylacetone. wrap around	characteristics of s-block elements, oxides, hydroxide, carbonate & its complexes

complexes with polydentate ligand such as crown	
ether and cryptate. Complexes of alkaline earth	
metals such as beryllium oxalate ion, chlorophyll	
and complex of calcium with EDTA.	
Oxidation and Definition of oxidation, Reduction, Oxidizing oxidation	and
Reduction agent and reducing agents according to classical reduction	зу
concept, electronic concept, oxidation number different	-
concept. Rules for assigning oxidation number, methods	
Balancing of redox reaction by	
1) Ion-electron method and	
2) Oxidation number method	

Specify Course Outcome: Familiarize the students with the concept and principle of Rules of logarithm, drawing graph, Derivatives, Integration, different mathematical concept and SI units. surface phenomena at heterogeneous surfaces and basic knowledge of gas phase, Kinetic molecular theory, critical phenomenon, liquefaction and molecular velocities. Impart knowledge about solid phase, crystallography and some crystal structure characteristics of s-block elements, oxides, hydroxide, carbonate & its complexes oxidation and reduction by different methods.

Specify Program Outcome: Understand the students with the Rules of logarithm, Derivatives, Integration, concept and SI units surface phenomena and gas phase, Kinetic molecular theory, critical phenomenon, liquefaction and molecular velocities. To know about solid phase, crystallography and some crystal structure characteristics of s-block elements, oxides, hydroxide, carbonate & its complexes, oxidation and reduction by different methods

Signature of Teacher Prof. S. B. Patwari Mr. S. L. Nakkalwar Dr. H. M. Kasralikar

Pro-forma for program and course outcomes (2.6.1) Academic year-2022-23

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Kaminwar & Dr. H. M. Kasralikar Department: Chemistry

Program: BSc FY Semester –II CBCS Subject: Chemistry Course Code: CH-103 Paper Title: Organic + Inorganic Chemistry Paper – III

Paper 11	tle: Organic + In	[
Unit	Unit Name	Торіс	Unit wise Outcome
I	Aromatic Hydrocarb- ons and Aromaticity	Introduction, Nomenclature, kekule and resonance structure of benzene, stability, Orbital picture of benzene. Aromaticity and antiaromaticity by Huckel's Rule (Benzene, Napthalene, Anthracene, Pyrrrole, Furan, Thiophene, Pyridine, Cyclopentadienyl cation and anion, Cyclopropenyl cation). Electrophilic Substitution reaction of benzene (with mechanism): Nitration, Halogenation, Friedel Craft alkylation and acylation. Orientation effect: Effect of activating and deactivating groups (-OH, NO ₂ , CH ₃ , Cl) on aromatic electrophilic (Nitration) substitution reaction(with mechanism)	Understand Aromaticity, Anti- aromaticity of organic molecules accessing Huckel's Rule.
Π	Phenols, Haloalkene and Haloarene	Introduction, classification, Acidic character (Comparison of acidity : phenol and ethanol) Chemical Reactions: Reimer-Tiemann reaction(Mechanism), Acetylation (mechanism), Fries rearrangement(Mechanism), Kolbe's Carboxylation reaction. a] Vinyl Chloride: synthesis of vinyl chloride from 1) 1, 2- dichloroethane 2) ethane Chemical reactions: Addtion reaction with HBr , polymerization reaction. b] Allyl Iodide: synthesis of allyl iodide from 1) allyl chloride 2) glycerol and HI. Chemical reactions: Reaction with NaOH, KCN, & Br ₂ . 2.2 Haloarenes: Introduction, Synthesis of halobenzene from 1) Hunsdiecker reaction 2) Gattermann reaction. Chemical reactions (with mechanism): Ullamann biaryl synthesis. Resonance & Relative reactivity of	Predict the stepwise mechanism of reactions of phenols, Haloalkenes & Haloarenes.

		रामांबाद, जि. नांदेह	
		alkyl halides v/s vinyl and aryl halides towards	
		nucleophilic substitution reactions.	
III	Carboxylic	A) Acid Chlorides: Introduction, preparation	Finding less
	acid	methods: 1) From acetic acid and thionyl	expensive
	derivatives	chloride, 2) From acetic acid and phosphorous	chemical
		pentachloride . Chemical reactions:(Hydrolysis,	methods to
		Action with alcohol, Action with amines).	synthesise
		B) Acid anhydrides: Introduction, preparation	desired
		methods: 1) From acetyl chloride and	products of
		carboxylic acid, 2) From acetyl chloride and	carboxylic
		sodium acetate. Chemical reactions:	acids.
		(Hydrolysis, Action with alcohol, Action with	
		amines). C) Esters: Introduction, preparation	
		methods: 1) From ethyl alcohol and acetic acid	
		, 2) From ethyl alcohol and acetyl chloride.	
		Chemical reactions: (Hydrolysis, Action of	
		amines, Reduction).D) Amides: Introduction,	
		preparation methods: 1) From ammonia and	
		acetyl chloride 2) From ammonia and acetic	
		anhydride. Chemical reaction: (Hydrolysis,	
		Action of nitrous acid).	
IV	Alcohols	A) Alcohols: Introduction and Classification.	
	and	a) Dihydric alcohol (ethylene glycol) :	
	epoxides	Preparation methods: (Hydroxylation of alkene	
		and From 1,2-dihaloalkane). Chemical reactions:	
		[Reaction of ethylene glycol with, 1) Pb(OAC)4,	
		2) P2O5/ZnCl2].b) Trihydric alcohol Glycerol):	
		Preparation methods from: 1) Oils and fats	
		2)Propene. Chemical reactions: [Reactions of	
		glycerol with, 1) Nitric acid, 2) Acetyl chloride].	
		B) Epoxides : Introduction and nomenclature.	
		Preparation methods: a) Oxidation of ethene in	
		presence of Ag catalyst , b) Oxidation of ethene	
		with per acetic acid. Chemical reactions: (Ring	
		opening reactions of propylene oxide in Acidic	
		b) and basic medium/reagent.	
IV	Study of P-	Part -II Inorganic chemistry	Know the
	block	Variation in properties : atomic radius,	periodic table
	elements	ionization energy, electron affinity,	ofP- Block
		electronegativity, metallic character, melting	elements.
		and boiling point, oxidizing and reducing	
		properties , Variation in acidic and basic	
		character of hydroxides of P-block elements,	
		diagonalrelationship between B and Si.	
\mathbf{V}	Acids	Introduction, Arrhenius concept, Bronsted-	Distinguish betwee
	and	Lowry concept, Lewis acids and bases concept	acids &Bases with
	Bases.	Discuss briefly with suitable example. Solvent	respective chemica
		systemconcept, Cady-Elsey concept, Lux-Flood	properties.

concept and Usanovich concept for acids and
bases. Definition of Hard, Soft and borderline
acids and bases with various example. Pearson's
principle (SHAB Principle), theories of
hardness and softness such as Electronic theory,
pibonding theory and Pitzer's
theory.Application of SHAB Principle such as
relative stability of compound, feasibility of
chemicalreaction. Limitation of SHAB concept.

Specify Course Outcome: Understand the aromatic, aliphatic compounds pertaining to chemical and physical properties.

Specify Program Outcome: Familiarize the students with the concept of reactions, mechanism, and synthesis of organic molecules.

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Kaminwar & Dr. H. M. Kasralikar

لم تصافح للمعامل للمعامل للمعامل المعامل المعامل للمعامل المعامل ا معامل المعامل معامل ممامل معامل معامل معام

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

Name of Teacher: Prof. S. B. Patwari, Mr. S. L. Nakkalwar & Dr. H. M. KasralikarDepartment: ChemistryProgram: B. Sc. FY Semester-IISubject: ChemistryCourse Code: CH-104Paper Title: Physical + Inorganic ChemistryP-IV

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι	Atomic	Introduction, Rutherford's alpha particle scattering	To impart
	Structure	experiment, Rutherford's atomic model and its	
		drawbacks. Bohr's theory of hydrogen atom: Bohr's	atomic structure,
		atomic model- Postulates, Merits and demerits.	
		Derivation for radius of an orbit, velocity of an electron	theories
		and energy of an electron. Energy difference in terms of	of atomic
		wave number and Rydberg constant. Bohr's	structure,
		explanation of hydrogen spectrum. The Sommerfeld	
		extension of the Bohr theory. Electronic configuration	
		of elements: Aufbau principle, Pauli's Exclusion	configuration
		principle, Hund's rule of maximum multiplicity and (n	and
		+ l) rule.	quantum
		1.4 Numerical problems on radius and energy. 1.5	numbers
тт	I javid Stata	Quantum numbers. Introduction, Various intermolecular forces in liquids	
II	Liquid State	dipole-dipole attraction, London forces, Hydrogen	
		bonding. Surface tension of liquid, units of surface	
		tension, effect of temperature on surface tension,	
		determination of surface tension of liquids by	
		stalagmometer method, numerical Problems based on method. Viscosity of liquid, units of viscosity, effect of	parachor
		temperature on viscosity, measurement of viscosity by	
		Ostwald's method, numerical Problems based on	
		method. Parachor and chemical constitution:	
		Relation between parachor and surface tension,	
		application of parachors in deciding structures.	
III	Colloidal	Introduction, classification of colloidal systems.Sols	Student will
	State		learn the basic
		Dispersion and aggregation methods. Properties of	
		sols-	colloidal state,
		Colour, Optical (Tyadall effect), Kinetic (Brownian	types,
			preparation,
		and electro osmosis). Coagulation of colloidal solution	·
			applications of
		Number. Emulsions (Liquids in liquids):- Types of	colloidal state
		emulsions, preparation of emulsion, Emulsifier, Role	
		of emulsifier. Gels (Liquids in solids):- Classification	
		gels, preparation of gel and properties gel –Hydration,	
		Swelling, Syneresis and Thixotropy. Applications of	

	क्र रस्मांबाद, जि. लांदेक				
		colloids (Food, Medicine, smoke precipitation,			
		sewage precipitation and in purification of water.)			
IV	Catalysis	Introduction to Catalyst and Catalysis. Catalyst- Type of catalyst, positive and negative catalyst with examples.4.3 Catalysis:-Type of catalysis, homogenous and heterogeneous catalysis with examples Autocatalysis- explanation with examples. Characteristics of catalytic reactions. Promoters: - Definition, example, explanation of promotion	Learning and understanding of catalysis, types of Catalyst		
		 action.4.7 Catalytic poisoning:- Definition, example, explanation of catalytic poisoning. 4.8 Acid-Base catalysis, General Acid-Base catalysis, examples. 4.9 Enzyme catalysis, examples, mechanism of enzyme catalysis, characteristics of enzyme catalysis. 4.10 Applications of catalysis in industries. 			
V	Chemical	Definition, Cause for chemical bonding, Types of	То		
·	Bonding I	chemicalbonding.	understanding		
	8 -	<i>Ionic Bonding</i> : Definition and explanation, Factors	the chemical		
		affecting the formation of ionic bond, Energy	bondand its		
		charges in the formation of ionic bond, Lattice energy	different types		
		and Born-Haber cycle. Polarizing power	of bonds		
		andpolarisability andFajan's rule.			
		Covalent bonding : Definition and explanation,			
		Sigma and pi-bond, Valence bond theory of covalent			
		bonding and its limitations, Percentage ionic			
		character in covalent bond from dipole moment and			
		electronegativity difference (Numericals).			
		Metallic bonding: Definition and explanation, Free			
		electron theory of metallic bonding, Effects of			
		metallic bonding on metallic properties.			
		Vander Waal's bonding: Definition and explanation,			
		Types of Vander Waal's forces responsible for Vander waals bonding.			
		<i>Hydrogen bonding:</i> Definition and explanation,			
		Types of hydrogen bonding and consequences of			
		hydrogen bonding.			
		Unique properties of water based on hydrogen			
		bonding. Importance of hydrogen bonding in			
		sustaining life.			
VI	Chemical	Concept of hybridization: Definition and	Learning the		
	Bonding II	explanation of dsp ² hybridization by taking example	Concept of		
		of [Ni(CN)4]-2, sp ³ d hybridization by taking	hybridization		
		example PCl5, Sp^3d^2 hybridization by taking	and study of		
		example SF6. Sp ³ d ³ hybridization by taking example	VSEPR &		
		IF7.	Molecular		
		VSEPR Theory: Postulates and explanation,	Orbital		
		Applications in explaining geometry and bond angle in molecules such as CH4, NH3, and H2O.	theory		
		Limitations of VSEPR theory.			
		Molecular Orbital Theory: Basic principle of MOT,			
		LCAO, Bonding and antibonding molecular orbital,			

Energy level diagram for molecular orbital. Rules for					
adding electronsin MO's, Bond order,					
Molecular orbital diagram of homo nuclear					
diatomic molecules such as H2, N2, O2, and Ne2					
And CO.					

Specify Course Outcome: To impart knowledge of different theories of atomic tructure, rules of electronic configuration and quantum numbers also Liquid phase as surface tension, Viscosity and parachor. colloidal state, types, preparation, properties and applications of colloidal state. Catalysis, types of catalysis and characteristics of catalyzed reactions chemical bond and its different types of bonds Learning the Concept of hybridization and study of VSEPR & Molecular Orbital theory

Specify Program Outcome: Understand concept of Atomic structure, Liquid state, Colloidal state, Catalysis and Chemical Bonding

	Signature of Teachers	Prof. S. B. Patwari	Mr. S. L. Nakkalwar	Dr. H. M. Kasralikar
--	-----------------------	---------------------	---------------------	----------------------

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

Name of Teacher: Prof. S. B. Patwari, Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H. M. Kasralikar

Department: Chemistry

Subject: Chemistry

Program: BSc FY CBCS

Course Code: CH-105

 $\mathbf{Paper} - \mathbf{V}$

Paper Title: Inorganic + Organic + Physical Chemistry

Unit	Unit Name	Topics	Unit-wise
No.			Outcome
Ι	Inorganic	A) Inorganic Chemistry Identification of Two acidic	Analyse &
	Chemistry	and Two basic radicals by Semi-micro qualitative	identify of
		analysis technique.(Including interfering radicals).	acidic & basic
		(Any Six) 1) At least eight mixtures of salt must be	radicals
		practiced. 2) Spot- tests (of each radical) are	
		compulsory.	
II	Organic	B) Organic Chemistry I) Preparations (Any Four) : a)	Nurture the
	Chemistry	Phthalimide from phthalic anhydride and urea.	research
		b)Acetanilide from aniline. c) Iodoform from acetone.	attitude to
		d) Phenyl – azo – β –naphthol from aniline. e) m -	synthesize
		Dinitobenzene from nitrobenzene. f) Phthalic	various organic
		anhydride from phthalic acid. (Recrystallization and	products.
		Melting point of product is compulsory)	
		II)Determination of Physical constant of Organic	
		liquids (Any four) Aniline, Ethanol, Toluene,	
		Benzene, ortho and meta toluidines, Chlorobenzene	
		and Nitrobenzene. III)Demonstration on purification	
		by - a)Recrystalisation of Phthalic acid/Benzoic acid	
		from hot water. b) Distillation of Ethyl alcohol. c)	
		Sublimation of Napthalene.	
III	Physical	C) Physical Chemistry (Any Six) 1. Determination of	Creating the
	Chemistry	the Viscosity of liquid by Ostwald's viscometer. 2.	skills of
		Determination of the Viscosity of two pure liquids A	accessing
		& B. Hence find the composition of the mixture of two	instruments
		liquids. (Density data of liquids, viscosity of water to	
		be given). [Any two liquids from : Acetone, Carbon	
		terachloride, Chloroform, Ethyl alcohol, Benzyl	
		alcohol, Ethylene glycol and n-propyl alcohol]. 3. To	
		determine the surface tension of a given liquid by	
		stalagmometer method.	

Specify Course Outcome: Creating awareness of chemistry practical's regarding analysis, synthesis and instrumental skills.

Specify Program Outcome: Building confidence of chemistry practical knowledge among the students.

Signature of Teacher: Prof. S. B. Patwari, Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H. M. Kasralikar

Pro-forma for program and course outcomes (2.6.1))

Academic year-2022-23

Name of Teacher: Dr. N. S. Kaminwar,

Department: Chemistry

Subject: Chemistry

Paper Title: Organic + Inorganic Chemistry

Program: B. Sc. SY Semester -- III CBCS Course Code: CH-201, Paper : VI

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι	Name Reaction with Mechanism	 A) Condensation reactions of Aldehydes and Ketones. 1. Benzoin Condensation Reaction. 2. KnoevengeI Reaction. 3. Mannich Reaction 4. Perkins Reaction, 5. Reformatsky reaction. 6. Gatterman Koch reaction. 7. Gatterman synthesis. B) Reduction reactions 1. Clemmensen Reduction Reaction. 2. eervin-Pondorof- Verly reduction reaction. 3. Reduction with LiAlH4. 4. Reduction with NaBH4. [C] oxidation reactions. 1. Baeyer- Villiger Oxidation Reaction. 2. 	Learn the mechanism of name reactions Learn the mechanism of name reactions
Π	Aromatic Carboxylic and Sulphonic Acids.	Oppenauer oxidation. 1. Introduction and Classification of Aromatic Carboxylic Acids. 2. Synthesis and Chemical Reactions of Following Acids. [A] Benzoic Acid. 1. Preparations From: (a) Phenyl Cyanide, (b) Toluene. 2. Reactions of Benzoic Acids: a) Acyl halide formation b) Reduction. C) Nitration [B] Anthranilic Acid: 1. Preparations From : (a) Phthalimide. b) O-nitroToluene. 2. Reactions of Anthranilic Acids: a) Action of heat, b) Nitrous Acid, c) Action of acetic anhydride/acetyl chloride. [C] Salicylic Acid: 1. Preparations From: (a) Kolbe's reaction. (b) Reimer-Tiemann reaction. 2. Reactions of Salicylic Acids: a) Bromination, b) Nitration, c) Decarboxylation, d) Reaction with Zn-dust. [D] Phthalic Acid 1. Preparations From: (a) o-xylene. (b) Naphthalene. 2. Reactions of Phthalic Acids: a)Action of heat. b) Action of PC15. C) Action of ethanol. [E] Benzene Sulphonic Acid. 1. Introduction. 2. Preparation of benzene sulphonic acid from benzene with mechanism. 3. Chemical Reactions of benzene sulphonic acid, a) Salt formation b) formation of sulphonyl chloride, c) formation of sulphonic group by: a) Hydroxyl group. b) cyano group, c) Hydrogen atom d) NH2 –group.	Know the Classification, Synthesis, and Reactions of Aromatic Carboxylic and Sulphonic acids.

		प्रमाबाद, जि. नादिङ	
III	[A]	1. Preparation of Methyl magnesium bromide. 2.	Know the
	Introduction to	Synthetic applications of Methyl magnesium	Synthesis, and
	Organometallic	bromide (CH3MgBr) : Hydrocarbons, Ethanol,	Reactions of
	Compounds.	2- propanol, 2-methyl-2-propanol, Ethanal, 2-	Organometallic
	-	propanone, ethanoic acid, Methanamine,	compounds
		Acetonitrile, Ethyl ethanoate. 2. Organo Lithium	Know the
		Compounds. 1. Preparation of methyl lithium	Synthesis, and
		from methyl iodide. 2. Synthetic application of	Reactions of
			Organometallic
		Methyl lithium(CH3Li): Methane, Ethanol, 1-	compounds
		propanol, 2-propanol. 3. Organo Zinc Compounds:	compounds
		1. Preparation of diethyl zinc from ethyl iodide. 2.	
		Synthetic application of diethyl zinc [(C2H5)2Zn]:	
		Methane, 2-propanone, Ethanol, 2-propanol.	
	[B] Organic	1. Introduction, Acidity of alpha hydrogen. 2.	Learn the
	Synthesis via	Synthesis of Ethyl Acetoacetate. [Claisen	synthesis,
	Enolates.	Condensation Reaction with Mechanism]	mechanism,
		3. Ketol-EnolTautomerism of ethyl acetoacetate.	applications of
		4. Synthetic Applications of Ethyl Acetoacetate.	active
		Synthesis of Enamines, Acetylation and	methylene
		Alkylation of Enamines.	compounds
IV	Oils, Fats,	A. Introduction, chemical nature, General	Gathering basic
_ (Soaps and	physical properties and 1. General chemical	knowledge of
	Detergents	properties. a) Hydrolysis b) hydrogenation	Oils, Fats,
		c) hydrogenolysis d) trans-esterification	Soaps and
		e) Rancidity and autoxidation. f) Analysis of Fats	Detergents
		and Oils. i) Saponification number	Gathering
		(Saponification value) ii) Iodine number (Iodine	basic
		value) iii) Acid value iv) Reichert Meissl value	knowledge of
		(R. M. value) B] SOAPS 1. Introduction, 2.	Oils, Fats,
		Manufacture of soaps by i) Kettles process ii)	Soaps and
		Hydrolyser process.iii) Cleansing action of soap.	Detergents
		C] Synthetic Detergents. 1. Introduction, 2.	Detergents
		Synthetic detergent classification, i) Anionic	
		detergent ii) Cationic detergents iii) Non ionic	
		detergents. 3. Synthetic detergent versus soaps,	
		Soft versus Hard detergents	
V	[A] Theory of	a) Introduction: Definition of qualitative analysis,	Understand the
V	Qualitative	macro, micro and semimicro qualitative analysis,	basic principle
	Analysis	radicals, acidic and basic radicals. b) Role of	and application
	rx11a1 y 515	sodium carbonate extract in qualitative analysis.	of Qualitative
		c) Interfering radicals. Removal of interfering	Analysis
		radicals such as oxalate, borate, fluoride and	A11a1 y 515
		phosphate. d) Use of solubility product, common	
		ion effect and complex ion formation in the	
		analysis of basic radicals: i) Separation of IIA and	
		IIB, ii) Separation of II and IIIB. iii) Separation	
		of IIIA and IIIB, iv) Separation of Zn ⁺⁺ and Mn ⁺⁺ .	
		· · ·	
		v) Separation of Co ⁺⁺ and Ni ⁺⁺ vi) Separation of	

		Fe ⁺⁺⁺ and Al ⁺ aration of Cu ⁺⁺ and Cd ⁺⁺ .	
		 e) Use of organical agents in qualitative analysis. i) 8-Hydroxy quinoline for aluminium ii) α- 	
		i) 8-Hydroxy quinoline for aluminium ii) α-	
		Benzoinoxime for copper. iii) Dimethylglyoxime	
		for Nickel iv) 1,10-Phenonthroline for Iron. v) α-	
		Nitroso-β-naphthol for cobalt.	
VI	[B] Non-	a) Introduction b) Classification of Solvents.	Know the
	aqueous	c) Water as a universal solvent b) Physical	Classification,
	Solvents	properties of solvent: Dipole moment, Dielectric	Properties of
		Constant, Trouton's Constant, Viscosity. Melting	Non- aqueous
		Point & Boiling Point. c) Reactions in liquid	solvents
		ammonia as solvent : Auto ionization, Acid-Base,	
		Ammonolysis, Precipitation and ammonation. d)	
		Reactions in liquid SO2 : Autoionization,	
		Acid- Base, Solvolysis, Precipitation and	
		Solvation.	

Specify Course Outcome: Acquire basic knowledge about name reactions with mechanism and synthesis of aromatic carboxylic, sulphonic acids, organometallic, active methylene compounds and understand qualitative analysis with properties of non aqueous solvents.

Specify Program Outcome: Understand organic reactions with mechanism and analyze different solvents.

Name of Teacher: Dr. N. S. Kaminwar,

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

Name of Teacher: Prof. S. B. Patwari,

Department: Chemistry

Subject: Chemistry Paper Title: Physical + Inorganic Chemistry **Program:** B. Sc. SY Semester –III CBCS **Course Code:** CH-202 **Paper : VII**

Unit Number	Unit Name	Topics	Unit-wise Outcome
Ι	Atomic Structure and Wave Mechanics	1.1 Planck's quantum theory. 1.2 Photoelectric effect, explanation on the basis of quantum theory. Compton Effect: Statement, explanation. de- Broglie hypothesis; derivation of de-Broglie equation, explanation. 1.5 Davisson-Germer experiment.1.6 Heisenberg's uncertainty principle: Statement, explanation. 1.7 Schrodinger wave equation; Derivation in time independent form and Laplacian operator form, Physical significance of wave function (Ψ) and (Ψ 2). 1.8 Numerical on photoelectric effect, de-Broglie equation, Heisenberg's uncertainty principle.	Understand the development of structure of atom.
II	Thermodyna mics:	Introduction to First law of thermodynamics. Joule's law. Joule-Thomson effect. Joule- Thomsoncoefficient and inversion temperature. Need for second law thermodynamics, different statements of second law of thermodynamics. Carnot's cycle and its efficiency. Carnot's theorem. Numerical on efficiency of Carnot cycle.	Apply the laws of thermodyn - ami cs in day to day life.
III	Concept of entropy	Introduction, Definition, Mathematical Expression, Unit. Entropy as a state function. 3.3 Entropy change in Physical transformations: (i) Fusion of a solid. (ii) Vaporization of a liquid. (iii) Transition from one crystalline form to another. 3.4 Entropy changes for an ideal gas as a function of V and T and as a function of P and T. Entropy changes of an ideal gas in different processes. Physical significance of entropy. 3.7 Numerical on entropy change in physical transformations and entropy changes of an ideal gas in different processes.	Evaluate the concept of entropy.
	Phase equilibrium	Phase rule, Statement and explanation of the terms-phase, component and degree of freedom.	Analyse the phase equilibrium.

		🔊 धर्माबाद, जि. नांदेड	1
		Ag system, desilverisation of lead, KI-H2O	
		system. Partially miscible liquids: Critical	
		solution temperature, upper critical solution	
		temperature, lowers critical solution temperature.	
		Phenol-water, triethylamine-water, nicotine-	
		water systems. Effect of impurities on critical	
		solution	
		temperature.	
\mathbf{V}	[A] Nuclear	a)Introduction, composition of nucleus and	Understand the
	Chemistry	nuclear size. b)Classification of nuclides:	role of nuclear
		Isotopes, isobars, isotones, isotones and isomers.	chemistry in
		c) Nuclear Stability: Odd and even number of	various fields.
		protons and neutrons, N/Z ratio, magic number,	
		packing fractions (Numerical), mass defect	
		(Numerical), nuclear binding energy (Numerical)	
		and mean nuclear binding energy (Numerical).	
		d) Release of nuclear energy: i) Nuclear fission	
		reaction, nuclear fuels and plutonium bomb. ii)	
		Nuclear fusion reaction, the energy of sun,	
		hydrogen bomb. e) Definition of radioactivity,	
		characteristics of α , β , and γ particles, group	
		displacement law. f) Application of radioisotopes	
		in medicine, agriculture,	
		industry, and carbon dating.	
VI	[B] Theory of	a) Introduction, definition of gravimetric analysis.	Apply
	Gravimetric	b) Steps involved in gravimetrc analysis c)	theoretical
	Analysis.	Precipitation, Conditions for Precipitation d) types	knowledge in
		of precipitates. e) Factors affecting precipitation	practical.
		such as temperature and pH, Solubility and	
		Solubility Product. f) Different Steps involved in	
		gravimetric analysis: i) Precipitation, ii) Digestion	
		, iii) Filtration & Washing, iv)Drying,v) Ignition	
		& Inceneration, vi) Weighing.	

Specify Course Outcome: Understand the concept of atomic structure, thermodynamics, phase rule, entropy, nuclear chemistry and theory of gravimetric analysis

Specify Program Outcome: Apply the understanding of structure of atom, thermodynamics, phaserule, entropy, nuclear chemistry and theory of gravimetric analysis in practical exercise.

Signature of Teacher: Prof. S. B. Patwari,

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

B. Sc. SY Semester –III
ode: SECC-I (A)
ECI

Unit	Unit Name	Торіс	Unit wise
			Outcome
Ι	Pollution	Pollution: - Introduction, Definition, Sources &	
		effect of water pollution. Control measures of water	
		pollutions.	
II	Analysis of	Physical Parameters	
	water	a) Temperature b) Electrical Conductance	
	pollution:-	c) Total Suspended Solids d) Total dissolved Solids	
	Theory &	e) Total Solids f) Oil & Greases.	
	Practically		
III	Chemical	a) PH b) Dissolve Oxygen	
	Parameters	c) Chemical Oxygen demand d) Bio-Chemical	
		Oxygen demand e) Hardness f) Chloride g) Sulphate	
IV	Biological		
	aspects.		

Specify Course Outcome:

Specify Program Outcome:

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H. M. Kasralikar

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

Fro-jorma jor program and course outcomes (2.0.1)) Academic year-2022-25

Name of Teacher: Dr. N. S. Kaminwar Department: Chemistry

Subject: Chemistry

Program: B. Sc. SY Semester –IV CBCS **Course Code:** CH-203 **Paper:** VIII

Paper T	r Title: Organic + Inorganic Chemistry Paper: VIII		
Unit	Unit Name	Торіс	Unit wise Outcome
Ι	Stereochemistry	1. Introduction 2. Concept and Types of	Learn the
		isomerism. (a) Structural isomerism (b) Stereo	stereoisomeris
		isomerism. 3. Types of structural isomerisin	m of chiral
		[Chain, Position, Functional, Metamerism,	
		Tautomerism] 4. Types of Stereoisomerism	compounds
		[Conformational(n-butane) and Configurational]	
		5. Geometrical isomerism: Cis -Trans and E and Z	
		system of nomenclature. 6. Optical isomerism: a)	
		Concept of asymmetric carbon atom, Chiral	
		centre. b) Dextro and Laevo forms, Racemic	
		mixture. c) Element of symmetry [plane, Centre,	
		and Axis] d) Concept of Diastereoisomers. e) Racemic modification. (with one example) f)	
		Resolution (Concept) (with one example) ()	
		Walden inversion. (with one example) h) Relative	
		Configuration and Absolute configuration.[D,L	
		and R,S notations]	
II	Carbohydrates	1. Introduction. 2. Classification and	Know the
		Nomenclature 3. Reactions of Monosaccharide's	Classification,
		(Glucose and Fructose) a) Addition reactions b)	and Reactions
		Ether formation c) Reduction of glucose d)	of
		Oxidation of glucose e) Osazone formation with	carbohydrates.
		mechanism 4. Open and cyclic structure of	
		glucose 5. Determination of ring size 6.	
		Mutarotation with Mechanism. 7.	
		Epimerization. 8. Cyclic Structure of D-glucose.(
		supporting evidence for six member ring) 9.	
		Interconvertions: a) Glucose to Fructose. b)	
		Fructose to Glucose. c) Glucose to Mannose. d)	
		Glucose to Arabinose (Ruff Degradation)	
		e) Arabinose to Glucose (Kiliani synthesis) 10.	
		Pyranose Structure of Glucose. 11. Manufacturing	
		of sucrose (sugar) from sugar cane.	T 7 1
III	Nitrogen	A] Aromatic Nitro Compounds. 1. Introduction,	Know the
	Containing	Nomenclature, 2. Preparation of Nitrobenzene	Synthesis, and
	Organic Compounds	from benzene 3. Physical and Chemical properties	Reactions of
	Compounds.	of Nitrobenzene. 4. Electrophilic substitution	Nitrogen

प्रमाबाद, जि. नादेक				
IV	Applications of Reagents In Organic Synthesis.	reactions. 5. Reductions: a) in acidic medium. b) In neutral medium. c) In alkaline medium. d) Electrolytic reduction. B] Aromatic amines: 1) Introduction, Classification, Nomenclature, 2) Methods of preparations of aniline from i) chlorobenzene ii) phenol iii) nitrobenzene iv) from phthalimide 3) Chemical properties. i) Diazotization reaction. ii) Action of carbon disulphide. iii) Action of benzoyl chloride. iv) Formation of Schiff's base. v) Carbylamine reaction. vi)Formation of p-nitroacetanilide 4. Effect of substituent (-NO2, -OCH3, -CH3)on the basicity of aniline. C] Diazomethane 1. Introduction. 2. Methods of preparations i) From N-nitroso-N- methylurethane ii) From nitrous oxide and methyl lithium 3. Reactions of Diazomethane i) Action of heat ii) Reaction with mineral acid iii) Reaction with phenol iv) Reaction with ethanol and ethanamine v) Ring expansion (cyclopentanone to cyclohexanone) D] Urea: 1. Synthesis of urea by a) Wohlers methods and b) From CO2. 2. Reactions: a) Action of heat b) Action of nitrous acid c) Hydrolysis d) Action of thionyl chloride e) Action of acetyl chloride h) Salt formation. A] Osmium Tetraoxide [OsO4] 1. Introduction, Preparation 2. Reactions: a) In the formation of Cis-1,2-diol, b)Acralaldehyde to glyceraldehyde, c) Cis- hydroxylation of maleic acid, d) 9, 10- dihydroxylation of phenanthrene. B] Ozone. [O3] 1. Preparation, 2. Reactions: a) Synthesis of aldehydes and ketones, b) Synthesis of aldehydes and hydroxyl aldehydes, c) In degradation of alcohols. C] Selenium Dioxide. [SeO2] 1. Preparations, 2. Reactions: a) Oxidation of reactive methylene group into Carbonyl group. b) In dehydrogenation reactions. c) allylic hydroxylation and oxidation D] Boron Trifluoride. [BF3] 1. Preparation, 2. Reactions: a) Oxidation of reactive methylene group into Carbonyl group. b) In dehydrogenation reactions. c) allylic hydroxylation and oxidation D] Boron Trifluoride. [BF3] 1. Preparation, 2. Reactions: In the formation of: a) acids, b) esters c) diketones, d) Nitration, e) Sulphonatio	Compounds Gathering Applications of Reagents In Organic Synthesis	
		reaction.		
V	[A] Chemistry	a) General Characteristics of d-Block Elements.	Understand the	
	of d-Block	b) Electronic Configuration of Second & Third	Characteristics	
	Elements	Transition Series Elements. c) Comparison of	of d- Block	
		Second & Third Transition Series Elements with	Elements	
		first transition series elements. d) Compounds of i)		
		first transition series elements. d) Compounds of i)		

		🔊 धमाबाद, ाज. नादड	
		Rhodium & Irridium ii) Palladium & Platinum iii)	
		Silver & Gold iv) Cadmium & Mercury.	
VI	[B] Chemistry	a) General Characteristics of d-Block Elements.	Know the
	of f-Block	b) Electronic Configuration of Second & Third	Characteristics
	Elements.	Transition Series Elements. c) Comparison of	of d- Block
		Second & Third Transition Series Elements with	Elements
		first transition series elements. d) Compounds of i)	
		Rhodium & Irridium ii) Palladium & Platinum iii)	
		Silver & Gold iv) Cadmium & Mercury.	

Specify Course Outcome: Acquire basic knowledge about stereochemistry, carbohydrates, nitrogen containing compounds and reagents.

Specify Program Outcome: Understand stereochemistry, sugars, nitrogen compounds, reagents.

Signature of Teacher Dr. N. S. Kaminwar

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

Name of Teacher: Prof. S. B. Patwari

Department: ChemistryProgram: B.Sc.SY Semester-IVSubject: ChemistryCourse Code: CH-204 Paper title: Physical+ Inorganic ChemistryP-IX

Unit	Unit Name	Topic	Unit wise
			Outcome
I Chemical		1.1 Introduction: Rate of reaction, Definition and	Understand the
	Kinetics	units of rate constant, Factors affecting rate of	concept of
		reaction, Order and Molecularity of reaction. 1.2	chemical
		Zero order reaction: Rate expression and	kinetics and
		Characteristics. 1.3 First order reaction: Rate	order of
		expression and Characteristics. 1.4 Pseudounimol -	reaction.
		ecular reactions. 1.5 Second order reaction:	
		Derivation of rate constant for equal and unequal	
		concentrations of the reactants. Characteristics of	
		second order reaction. 1.6 Methods of determina -	
		tion of order of a reaction. 1.7 Collision theory of	
		reaction rates. 1.8 Effect of temperature on reaction	
		rates and Arrhenius equation. 1.9 Numericals on first	
TT	Electro chomic	order eactions, half-life method.	A receive the
II	Electrochemis	2.1 Introduction, Conduction of electricity, Types of	Apply the
	try	conductors: electronic and electrolytic. 2.2 Conductance of electrolytes: Conductance,	concept of electrochemistr
		Conductance of electrolytes: Conductance, Specificresistance, Specific conductance, Equival -	
		ent conductance, Molecular conductance and their	y to learn the phenomenon of
		units. 2.3 Variation of specific and equival -ent	conductance.
		conductance with dilution, Equivalent conductance	conductance.
		at infinite dilution. Effect of tempera -ture on	
		conductance. 2.4 Conductivity cell, Cell constant and	
		its determination. 2.5 Strong and weak electrolyte.	
		Arrhenius theory of electrolytic dissociation and its	
		limitations. Debye-Huckel theory of strong	
		electrolytes. Relaxation effect and electrophoretic	
		effect, Debye-Huckel, Onsager's equation and its	
		verification. 2.6 Migra -tion of ions, Transport	
		number. 2.7 Numericals on Specific conductance,	
		Equivalent conductance and cell constant.	
III	Kohlrausch'	3.1 Kohlrausch's law, Applications of Kohlrau -sch's	Evaluate the
	s law	law: i) Determination of equivalent conductance at	concept of
		infinite dilution of weak electroly -tes. ii)	conductancein
		Determination of degree of dissociation. iii)	various
		Determination of solubility of sparingly soluble salts.	titration.
		iv) Determination of absolute ionic mobility. v)	

r		र्ठ्र धर्माबाद, जि. नांदेड 🕜	r1
		Determination of ionic product of water. 3.2	
		Conductometric titrations: (i) Strong acid against	
		strong base. (ii) Strong acid against weak base (iii)	
		Weak acid against strong base. (iv) Weak acid	
		against weak base. (v) Precipitation titration. 3.3	
		Advantages of conductometric titrations.	
IV	Photochemist	3.1 Introduction to photochemistry, types of	Analyse the
	ry	chemical reactions, difference between thermal and photochemical reactions. 3.2 Lambert-Beer Law: Light absorption by solution, molar extinction coefficient, transmittance, absorbance, optical density. Laws of photochemistry: Grothus-Drapper law, Stark-Einstein law of photochemical equivalence. Quantum yield, experimental determination of quantum yield. High and low quantum yield reactions. Reasons for high and low	photochemical reaction.
		quantum yield. 3.5 Jablonski diagram with various Processes occurring in the excited state. (internal Qualitative description of Fluorescence, phosphorescence, non-radiative processes Conversion, inter- system crossing). Photosensitized reactions. Chemiluminescence. 3.6 Numericals on quantum yield.	
V	Chemistry of Non-	a) Silicates: Definition, Basic Unit of silicate and classification on the basis of basic unit and their	Understand the role of non
	transition elements	characteristics. b) Zeolite: Definition, preparation, classification and applications. Ultramarine.c) Carbide: Definition, classification, preparation, properties and structure of ionic or salt like carbides (CaC2), Metallic carbide (TiC) and covalent carbides (SiC). d) Fullerene: Preparation, properties, structure	transition elements in various fields.
VI	Chemistry Halogen compounds	 and applications. a) Inter-halogen compounds: i)Definition preparation and structure of XY, XY3, XY5, and XY7 types of inter-halogen compounds. ii)Pseudo-halogen: Definition, preparation and properties. b) luorocarbon: Definition, preparation properties and uses (Teflon). c) Polyhalides: definition, preparation, properties & 	Understand the role of halogen in the synthesis of various compounds.
		structure of ICl2-, & ICl4-d) Oxides of halogens: Preparation, structure & uses of F2O, Cl2O, Cl2O7, & I2O5. e) Oxyacids of halogens: Introduction, oxidation state, structure strength and stability. Basic properties of halogens: I+ and I+3 compounds and their preparation	

Specify Course Outcome: Understand the concept of chemical kinetics, electrochemistry, photochemistry, non transition elements and halogen and with illustration.

Specify Program Outcome: Apply the understanding of chemical kinetics, electrochemistry, Photochemistry, non transition elements and halogen in the welfare of society.

Signature of Teacher

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

Name of Teacher: Prof. S. B. Patwari, Dr. H. M. Kasralikar &Department: ChemistryProgram: B. Sc. SY Semester-III & IVSubject: ChemistryCourse Code: CH-205, (CCC III & IV Section- A)P - XCourse Name Practical's based on P-VI & P-VIII Paper Title: Organic + Inorganic Chemistry

Unit	Unit Name	Topic	Unit wise
		-	Outcome
Ι	Part I (Organic	i) Determination of Rf values of O, M and P-nitro	Learn basics of
	Chemistry)	aniline. ii) Separation of benzene and water by	thin layer
	Only	distillation method.	chromatograph
	demonstration		yand
			distillation
II	Qualitative	Identification of following organic compounds.	Learn
	analysis	(Two from each of the following) a) Acids: Benzoic	fundamentals
		acid, Phthalic acid, Salicylic acid, Cinnamic acid, o-	of organic
		chloro benzoic acid. b) Base: Aniline, P-nitroaniline,	qualitative
		m-nitroaniline, resorcinol, P-toludiene. c) Phenols:	analysis
		Phenol, α -naphthol, β -naphthol, p-cresol, m-nitro -	
		phenol. d) Neutral: Naphthalene, Anthracene,	
		Acetanilide, m-dinitrobenzene, Nitrobenzene.	
III	Quantitative	a) Estimation of glycine by Sorenson's method.	Learn about
	analysis:	b) Estimation of phenol by bromination method.	estimations
	(estimation)any	c) Estimation of glucose by iodination method.	
	four)	d) Estimation of unsaturation (cinnamic acid).	
		e) Estimation of saponification value of an oil.	
		f) Estimation of iodine value of an oil	
IV	Part II (1 Determine volumetrically the amounts of sodium	Basics of
	Inorganic	carbonate and sodium hydroxide present together in	Volumetric
	Chemistry)	the given solution provided 0.1 N HCl solution	analysis
		2. Determine the percentage of CaCO3 in the chalk	
		sample, provided 1 N Hcl and 0.1N NaOH	
		3 Estimate the strength of the given sample of	
		KMnO4 Solution in g/lit. Prepare a standard solution	
		of N/10 Mohr's salt or N/10 Sodium Oxalate solution	
		4 Estimate volumetrically the strength of Ferrous	
		and ferric ion in the given solution provided N/10	
		KMnO4 Solution	
		5 Determine the strength in g/lit of each of HCl and	
		HNO3 present together in the given solution.	
		Provided N/10 NaOH and N/20 AgNO3 6	
		Determination of Nickel using murexide as an	
		indicator (Direct method) 7 Prepare standard	
		solution of Zn ion standardize the give EDTA	

	solution and estimate the amount of unknown Zn ion	
	concentration 8 To determine the total, permanent	
	and temporary hardness of water by complexometric	
	method using EDTA.	

Specify Course Outcome: Learn basics of thin layer chromatography, distillation, fundamentals of qualitative analysis of organic compounds, estimation of glycine, phenol, glucose, Cinnamic acid oil, vitamin-C and formaldehyde and basics of Volumetric analysis.

Specify Program Outcome: Understand concept of layer chromatography, distillation, qualitative analysisorganic compounds and estimation of organic compound and Volumetric analysis of compounds.

Signature of Teacher

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

Name of Teacher: Prof. S. B. Patwari, Dr. H. M. Kasralikar & Dr. N. S. KaminwarDepartment: Chemistry
Course Code: CH-206Program: B. Sc. SY Semester-III & IVSubject: ChemistryPaper - XICourse Name Practical's based on P-VI & P-VIIIPaper Title: Physical + Inorganic Chemistry

Uni	Unit Name	Topic	Unit wise
t		•	Outcome
Ι	Instrumental	1. Determine the normality and strength of strong acid	Understand the
		(HCl /H2SO4 / HNO3) onductometrically using	role of
		standard solution of strong base (NaOH / KOH).	instrumentatio
		2. Determine the normality and strength of weak acid	n for the
		(CH3COOH / HCOOH) conductometrically using	accurate
		standard solution of strong base (NaOH / KOH).	determination
		3. To determine the solubility of a sparingly soluble	of
		salts(BaSO4 / PbSO4 / AgCl) conductometrically at	concentration
		room temperature.	of solution.
		4. Determine the normality and strength of strong acid	
		(HCl /H2SO4 / HNO3) potentiometrically using	
		standard solution of strong base (NaOH / KOH).	
		5. Determine redox potential of $Fe3+/Fe2+/or$	
		Sn4+/Sn3+or Ce4+ / Ce3+ system by titrating it with	
		standard K2Cr2 O7 / KMnO4 potentiometrically	
		6. Verification of Lamberts-Beer's law using KMnO4	
		/NiSO4 / K2Cr2 O7 / CuSO4 colorimetrically and	
		determine concentration of unknown solution.	
		7. Determine the concentration of $Cu++$ ion in given	
		solution, titrating it against std. EDTA Solution by	
		colorimetric measurement. 8. To determine the	
		hydrolysis constant of aniline hydrochloride by pH	
		measurement.	
II	Non-	1. To study the effect of addition of electrolyte (KCl /	Apply the
	Instrumental	NaCl)on solubility of weak organic acid at room	practical
		temperature.	knowledge of
		2. Determine energy of activation of reaction between	chemistry for
		KI and $K_2S_2O_8$.	the verification
		3. Determine the parachor of p-dichloro benzene by	oftheoretical
		stalgmometer method.	aspect.
		4. To determine the composition of the given mixture	_
		consisting of two miscible liquids, A & B by viscosity	
		measurement.	
		5. Determine partition coefficient of iodine between	
		carbon tetrachloride and water.	
		6. Determine the solubility of benzoic acid in water at	

		🔊 धर्माबाद, जि. नांदेङ		
		different temperatures and hence its heat of solution.		
7. To study the effect of solute (NaCl / Succinic acid)				
	on the CST of phenol- water system and hence			
	determine amount of solute in given sample of phenol – water composition.			
		8. To find out the enthalpy of neutralization of weak		
		acid/weak base against strong base/strong acid and		
		determine the enthalpy of ionization of weak acid/		
	weak base.			
	9. To study the kinetics of dissolution of magnesium			
metal in dil.HCl 10. To study the kinetics of decompo				
		-sition of sodium thiosulphate by a mineral acid		
III	Inorganic	Inorganic Chemistry	Evaluate the	
	Chemistry	Separation of binary mixtures and estimation of any	theor -etical	
		one byvolumetric method: 1. $Cu + + Zn + + 2. Ba +$	concept of	
		+ + Ca + + 3. Mn + + + Zn + + 4. Fe + + + Al + + +	qualitative	
			analy -sis in	
			practical.	

Specify Course Outcome: Understand the concept of instrumentation, non instrumentation and qualitative analysis for the correct estimation.

Specify Program Outcome: Apply the skill during the instrumentation, non instrumentation and qualitative analysis for the correct estimation.

Name of Teacher: Prof. S. B. Patwari, Dr. H. M. Kasralikar & Dr. N. S. Kaminwar

Pro-forma for program and course outcomes (2.6.1) Academic year-2022-23

Name of Teacher: Dr. N. S. Kaminwa	r, Mr. S. L. Nakkalwar & Dr.H,M. Kasralikar
Department: Chemistry	Program: B. Sc. SY Semester – IV
Subject: Chemistry	Course Code: SECC-II

Paper Title: Preparation of Solutions & its standerdisation Paper: SEC II

Unit	Unit Name	Торіс	Unit wise	
			Outcome	
Ι	Introduction	Solute, solvent, solution, types of solutions,	Learn	
		Homogeneous solution, Heterogeneous solution.	fundamental	
		Concentration of solution, dilute solution,	concepts of	
		standard solution.	solutionsand it's	
			concentration	
II	Ways of	Percentage by mass (% w/W) Percentage by	Understand how	
	expressing the	volume (% v/V)Mole fraction (x)	toexpress	
	concentration	Molarity (M) Molality (m) Normality (N)	concentration	
	ofsolutions	Parts per million (Ppm)Parts per thousand (Ppt)		
	and their			
	preparation			
III	Preparation	Preparation of any standard solutions from stock	Understand how	
	of standard	solution.	to prepare	
	solutions	Numerical.	solutions of	
		(a) Molarity, Molality, Normality, Mole	different	
		fraction, ppm, ppt.	concentrations by	
		(b) Determination of concentration of mixing	solving numerical	
		different concentrations and volume of same		
		solution.		
		(c) Determination of compositons of mixture in		
		terms of mole fraction.		
IV	Standardisat-	1.6 Standardisation of KMnO4 solution.	Learn how to	
	ion ofsolutions	Standardistion of HCl solution. Standardisation of		
		NaOH solution. Standardisation of EDTA	solution of exact	
		solution. Standardisation of K2 Cr2O7 solution.	concentration	

Specify Course Outcome: Familiarize the students with the basic principle of solutions and preparation of solutions of exact concentration expressed in different ways

Specify Program Outcome: Understand basic concepts of solution and different ways for expressing concentration also how to prepare solutions of different concentration from standard solutions.

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr.H. M. Kasralikar

Pro-forma for program and course outcomes (2.6.1) Academic year-2022-23

_____ Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar

Department: Chemistry Subject: Chemistry

Program: B. Sc. TY Semester-V

P - XII

Course Name B. Sc. TY, Sem-V Paper Title: Organic + Inorganic Chemistry Unit Unit Name Topic

Course Code: CH-301

Unit	Unit Name	Topic	Unit wise
			Outcome
Ι	Heterocycl-	Introduction, definition, nomenclature and	Learn the
	ic Compou-	classification.	mechanism of
	nds	Simple five membered heterocycles with one hetero	Electrophilic
		atom: Furan, Thiophene and Pyrrole. Aromatic character	Substitution
		and molecular orbital picture of Furan, Thiophene and	reaction of
		Pyrrole.General mechanism of electrophilic substitution	Heterocyclic
		reaction with reactivity. Preparation and chemical	Compounds
		properties of five membered heterocycles.	
		1) Furan: Synthesis from: a) Mucic acid b)	
		Succinaldehyde. Physical Properties, chemical	
		Properties: Nitration, Gatterman-Koch reaction,	
		Gomberg reaction, Diels-Alder reaction and Reduction	
		reaction. 2) Pyrrole: Synthesis from: a) Furan b)	
		Succinamide. Physical properties, Chemical Properties:	
		Sulphonation, Gatterman Reaction, Reimer-Tiemann	
		reaction, Ring Expansion, Coupling reaction and	
		Reduction reaction. 3) Thiophene: Synthesis from: a) n-	
		Butane b) Sodium Succinate, Physical properties.	
		Chemical Properties: Halogenation, Chloromethylation,	
		Mercuration, Reaction with n-Butyl Lithium and Reduction reaction.	
II	Six-	Introduction, Nomenclature, Aromatic character, Basic	Learn the
11	membered	character and comparison with Pyrrole, General	mechanism of
	heterocycli	Mechanism for electrophilic substitution reaction and	Electrophilic
	c	nucleophilic substitution reaction Synthesis from: a)	Substitution
	compounds	Acetylene b) Pentamethylene diamine hydrochloride c)	reaction of
	compounds	β -Picoline Chemical Properties: Nitration,	Heterocyclic
		Sulphonation, Halogenation, reaction with KOH,	Compounds
		Amination reaction.	- I · · · ·
III	Synthetic	(1) Synthetic Drugs: Introduction, Definition of drugs,	Know the
	drugsand	qualities of good drug, Classification of drugs based on	characteristics
	dyes	therapeutic action. a) Pharmacodynamic agents :	,Classification
		Antipyretics, Analgesics, Anesthetics, Antidiabetics,	and synthesis
		Anti- inflammatory, sedatives, hypnotics and	of Drugsand
		tranquillizers. b) Chemotherapeutic agents:	Dyes
		Antimalarials, Antibacterials, Antifungals,	
		Antituberculars. Synthesis and uses of the following	

		क्र ध्वर्माबाद, छि. जांदेह]
		 drugs: a) Paracetamol b) Sulphanilamide c) Aspirin d)Benzocaine e) Isoniazide f) Sulphadiazine. (2) Synthetic Dyes: Introduction, Definition of dyes qualities of good dye, Classification of dyes based on methods of applications, colour and chemical constitution: a) Witt's theory b) Armstrong's theory. Synthesis and applications of Azo dyes: methyl orange and congo red (mechanism of diazo coupling); Triphenylmethane dyes: malachite green and crystal violet; Phthalein dyes: Phenolphthalein and Fluorescein dye. 	
IV	Alkaloids, Vitamins and Pesticides	 (1) Alkaloids: Introduction, occurrence and extraction, classification and general properties, determination of chemical constitution of alkaloids. Constitution and Synthesis of the following alkaloids. a) Ephedrine: Synthesis from : 1-Phenyl propane-1, 2-dione b) Nicotine : Synthesis from : Nicotinonitrile (2) Vitamins : Introduction and classification, Source, structure and deficiency diseases of the following vitamins: a) Vitamin A, D, E and K (Fat Soluble) b) Vitamin B1, B2, B3, B6, B12 and C (Water Soluble) (3) Pesticides: Introduction and classification: Insecticides, Herbicides, Fungicides and Rodenticides. Synthesis and technical manufacture and uses of representative pesticides in the following classes : Organochlorines(DDT,Gammexene,); Organophosphates (Malathion), Carbamates (Carbaryl), Quinones (Chloranil), Anilides (Alachlor). 	Gathering basic knowledge of Alkaloids, Vitaminsand Pesticides
V	Coordinati on Chemistry (Part-I)	5.1.1 Introduction: addition or Comparison of double salt and coordination compound. 5.1.2 Terminology: complex ion, central metal atom, ligand, types of ligands, coordination number and coordination sphere. 5.1.3 Nomenclature: Rules of nomenclature of coordination compounds, and its applications to nomenclature of simple and bridging complex compounds. 5.1.4 Werner's theory of coordination compound, postulates, applications with reference to 5.1.5 CoCl3.6NH3, CoCl3.5NH3, CoCl3.4NH3, CoCl3.3NH3. Chelating agents and its classification, difference between metal complex and metal chelate complex. 5.1.6 Isomerism: structural isomerism, ionization, hydrate, linkage, coordination isomerism, geometrical isomerism, optical isomerism in 4 and 6 coordination complex. 5.1.7 E. A. N. of metal complexes.	Understand the basic principle andapplication of coordination complexes
VI	The Chemistry of Elements	5.2.1Introduction5.2.2ChelationTherapy5.2.3Cancer Treatment5.2.4Anti-arthritis drugs.5.2.5Imaging agents.	Know the application of elements in

Medicine

Specify Course Outcome: Acquire basic knowledge about Heterocyclic Compounds, Synthetic Drugs andDyes, Alkaloids, Vitamins, Pesticides, Co-ordination Chemistry and elements in Medicine.

Specify Program Outcome: Understand Heterocyclic Compounds, Synthetic Drugs and Dyes, Alkaloids, Vitamins, Pesticides, Co-ordination Chemistry and elements in Medicine.

Signature of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar

Pro-forma for program and course outcomes (2.6.1) Academic year-2022-23

Name of Teacher: Prof.S. B. Patwari, Dr. H. M. Kasralikar Mr. S. L. Nakkalwar Department: Chemistry Program: B. Sc. TY Semester-V

Subject: Chemistry Course Code: CH-302

P - XIII

~		, one mould	00000000000000000		
(Course 2	Name B. Sc. TY, S	em-V Pa	per Title: Physical + Inorg	anic Chemistry
	Unit	Unit Name	То	pic	Unit wise
					Outcome

			Outcome
Ι	Spectroscopy I	Brief introduction to molecular Spectroscopy. Width and intensity of spectral lines. Factors affecting width and intensity of spectral line. Rotational spectra: Classification of molecules, Rotational spectra of diatomic molecules. (Rigid rotator model) Moment of inertia, energy levels of rigid rotator, selection rule, spacing between spectral lines of diatomic rigid rotator, isotopic effect. Numerical. v ibrational Spectra: Infrared spectrum, simple harmonic oscillator model, energy levels of simple harmonic oscillator, election rule, pure vibrational spectrum, intensity, determination of force constant, qualitative relation between force constant and bond energies. Numerical on force constant.	Understand the instrumentation and theoretical background of spectroscopy.
п	SpectroscopyII	a) Raman spectra: Raman effect, Concept of polarizability, classical and quantum theory of Raman scattering, rotational Raman spectrum of a diatomic molecule. Experimental Raman Spectroscopy. b) electronic spectra: Concept of potential energy curve, Franck-Condon Principle, Types of electronic transistions.	Understandbasic principle of Raman spectroscopy.
III	Chemical kinetics	a) Introduction, Third order reaction with equal concentration of all reactants, characteristics of third order reaction. b) Kinetics of complex reaction: i) Opposing reaction ii) Consecutive reaction c) Kinetics of Photochemical reaction: i) Hydrogen – chlorine reaction ii) Decomposition of HI iii) Dimerization of anthracene.	Applythepreviousknowledgeofchemicalkineticsinvarious reaction
IV	Distribution Law:	a) Introduction, Nernst Distribution law, Solubility and distribution law, Limitations of law. b) Association and dissociation of solute in solvent. c) Henry's law. d)Determination of equilibrium constant from distribution coefficient. e) Extraction of solvent. f) Liquid -liquid chromatography. g) Applications of distribution law. h) Numerical on distribution law	Apply the law of dissociation constant in various phases.

	दनगायाद, 101. नापठ			
V	Organometal -	1) Definition 2) Nomenclature and classification of	To understand	
	lic compounds	organometallic compounds. 3) Preparation,	the	
		properties, structure of organolithium.	organometallic	
		4) Preparation, properties, structure of ferrocene.	compounds and	
			Ferrocenes.	
VI	Metal	a. Definition, types 1) Mononuclear carbonyl,	Understand the	
	carbonyls	characteristics and examples; 2) Polynuclear	nature of metal	
		carbonyl, characteristics and examples. b.	carbon bond in	
		Preparation properties and structure of nickel tetra	metal carbonyl.	
		carbonyl. c. Nature of metal carbon bond in metal		
		carbonyl and their evidences. d. Structure of		
		Fe ₂ (CO) ₉ , Fe ₃ (CO) ₁₂ , Ir ₄ (CO) ₁₂ , Co ₂ (CO) ₈ .		

Specify Course Outcome: Understand the basic concept of spectroscopy, rate of reaction in various chemical reaction, distribution law and metal ion in organo metallic compounds.

Specify Program Outcome: Understand the concepts of molecular Spectroscopy and its applications. Analyze Rotational, Vibrational and Raman, Spectra. Interpret the theoretical and experimental methods of chemical kinetics. Know the theory and application of Distribution law. Explain the Nomenclature, classification and application of Organometallic Compounds. Illustrate the classification and application of Metal Carbonyls.

Name of Teacher: Prof.S. B. Patwari, Dr. H. M. Kasralikar, Mr. S. L. Nakkalwar

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H. M. KasralikarDepartment: ChemistryProgram: B. Sc. TY Semester –VSubject: ChemistryCourse Code: SECC-III

Paper Title: Computer Application in Chemistry Paper: SEC III

	*	T Application in Chemistry Taper, SEC III		
Unit	Unit Name	Торіс	Unit wise	
			Outcome	
Ι	Use of	ISIS draw, Chem drawand Chem sketch.	Understand the	
	software	For drawing the structures, elemental (CHN)	role of software for	
		analysis, determination of molecular mass,	the elucidation of	
		IUPAC name and prediction of	structure of	
		spectral data NMR andMASS.	compound.	
II	Biological	Biological activity and Toxicity evaluation of	Understand the	
	activity	organic compounds using software: Evaluation	mode of action	
	·	of toxicity risk assessment of organic	and mechanism of	
		compounds using online software. Prediction of		
		different biological activities using online	biologically active	
		software.	compound.	
III	Use of Excel	Functions and formulas: Sum, mean, average,	Understand the	
	in Chemistry	power etc. Understanding formulas, the cell and	use of excel in	
		the formula bar, the formula in action, copying	chemistry for	
		formulas, copying and pasting a formula and	ploting the graph	
		complex formula. b) Excel chart and data		
		analysis: Visual representation of the data	and analysis.	
		through excel graph, plotting and X-Y data set,		
		create calibration curve, format the view graph,		
		add trendline, equation of line and R- square		
		value, determine the slope of a line, scale		
		adjustment, examples, renaming the chart and		
		worksheet, common charting errors, add a chart		
		title.Add regrations and equation to graph,		
		regration analysis, run the regration and		
		interpreting regration results.		

Specify Course Outcome: Understand the students for the use of Software, Excel, analysis of Soil and Fuel. Able to know the use of software and Excel in Chemistry. Grasp the concept of Quality Assurance and Quality Control. Illustrate the Physical and Chemical analysis of Soil and fuel. Be able to evaluate biological activity and toxicity of organic compounds using software's.

Specify Program Outcome: To train the students for the use of Software, Excel, analysis of Soil and Fuel. Able to know the use of software and Excel in Chemistry. Grasp the concept of Quality Assurance and Quality Control. Illustrate the Physical and Chemical analysis of Soil and fuel. Be able to evaluate Biological activity and toxicity of organic compounds using software's.

Signature of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr.H.M. Kasralikar

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

_____ Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar **Department:** Chemistry Program: B. Sc. TY Semester-VI Subject: Chemistry Course Code: CH-303 P - XIV Course Name B. Sc. TY, Sem-VI Paper Title: Organic + Inorganic Chemistry Unit **Unit Name** Topic Unit wise Outcome I **Spectroscopic** i) Introduction, Electromagnetic radiations; learn the basic Methods Characteristics of EMR: - a) Wave length b) Wave principle and number c) Frequency d) Energy of EMR ii) termsused in Electromagnetic spectrum; Meaning of Spectroscopy, UV, IRtypes of Spectroscopy and advantages of spectroscopic Spectroscopy methods.(A) U. V. Spectroscopy:1.1.1 Introduction. 1.1.2 Absorption of U.V.radiations: Beer-Lambert Law and Molar Absorption.1.1.3 Types of Electronic Transitions.1.1.4 Terms used in U.V.Spectroscopy : Chromophore, Auxochrome, Bathochromic. Shift, Hypsochromic Shift, Hypochromic and Hyperchromic effects. 1.1.5 Effect of conjugation on position of U.V. and Visible bands. 1.1.6 Calculation of λ max by Woodward - Fieser rules for conjugated dienes and enones. 1.1.7 Spectral problems based on U.V. (B) I.R. Spectroscopy:1.2.1 Introduction 1.2.2 Principle of IR Spectroscopy.1.2.3 Fundamental Modes and types of Vibrations. Hooke's Law. 1.2.4 Conditions for absorption of IR-radiations. 1.2.5 IR Spectrum : Functional group region and Fingerprint region. 1.2.6 Characteristic absorption of various functional groups. 1.2.7 Interpretation of IR spectra of following organic compounds a) ethane b) ethane c) ethyne d) benzene e) 1-propanol f) 2-propanol g)tbutyl alcohol h) phenol i) acetone j)acetophenone k) acetaldehyde 1) benzaldehyde m) benzoic acid n) methyl benzoate o) phenyl cyanide. Π (A) NMR -2.1 Introduction 2.2 Principle of NMR Spectroscopy learn the basic Spectroscopy 2.3 Magnetic and non-magnetic nuclei, 2.4 PMRprinciple and Spectroscopy:Spinning nuclei, magnetic moment and termsused in magnetic field, precessional motion, energy states for NMR proton in magnetic field (Orientations) and nuclear Spectroscopy resonance. 2.5 Equivalent and non-equivalent protons. 2.6 Number of absorption signals in the following compounds:a) Acetone, b) Cyclobutane, c) Methanol, d) Ethylbenzene, e) Ethyamine, f) Mesitylene, g)

		क्र धरमीबाद, छि. लांधेड	
	(B)	 Diethylether, 2.7 Shielding and deshielding effects: (Example of Acetylene and Benzene) 2.8 Chemical shift, measurement of chemical shift by delta scale and tau scale 2.9 TMS as reference, Advantages of TMS. 2.10 Peak area (integration) andSpin-spin splitting (n+1) rule. 2.11 Interpretation of PMR Spectra of following compounds: a) Ethyl bromide, b) Ethyl alcohol, c) Acetaldehyde, d) 1,1,2-tribromo ethane, e) Ethyl acetate, f) Toluene, g) Acetophenone, h) Ethylamine, i) Acetic acid, j) Benzoic acid. a) n-Propyl alcohol, b) iso-Propyl alcohol, c) tert- 	To determine
	Applications of IR, UV and NMR for dentification of simple organic molecules: 04 Periods Organic Molecules	Butyl alcohol, d) Acetic acid, e) Ethylamine, f) Ethyl cyanide, g) Ethyl methyl ketone, h) Ethyl acetate, i) Ethyl benzene, j) Phenyl acetaldehyde, k) Phenol, l) Ethyl methyl ether, m) Ethylene glycol, n) Propionamide and o) Propionaldehyde.	the structure of organic compound by using UV, IR, NMR spectroscopy.
III	Synthetic Polymer	 3.1 Introduction, Homopolymers and Copolymers. 3.2 Classification of Polymers based on source. 3.3 Types of Polymerisation reactions: a) Addition (Chain-Growth) Polymerisation reaction: (with mechanism) i) Free radical, ii) Cationic and iii) anionic b) Condensation (Step-Growth) Polymerizations reaction Example: Bakelite (Phenol-formaldehyde resin) 3.4 Synthesis and uses of following polymers :a) Nylon-6, 10, b) Polyurethanes, c) Neoprene, d) Polymethylmethacrylate. 	To know the basic concept & synthesis of of synthetic polymer.
IV	Molecular Rearrangeme nts	 4.2.1 Introduction, classification of rea rrangements: On the basis of migratory group (a)Electrophilic rearrangement (Pinacole-Pinacolone rearrangement) (b) Nucleophilic rearrangement (ex. Favroskii rearrangement) (c) Free Radical rearrangement (ex. Photo Fries rearrangement) (d) Aromatic rearrangement (ex Stevens rearrangement) 	Describe the types of Rearrangemen t
V	Coordination theory (Part- II)	5.1.1) Valence bond theory of coordination compounds: Postulates, inner orbital and outerorbital complexes of coordination number 4 and 6. Limitations of VBT. 5.1.2) Crystal field theory: Shape of d-orbital's, postulates, splitting of d-orbital in octahedral complexes, tetrahedral complexes, tetragonal and square planarcomplex. Definition of CFSE, calculations of CFSE for octahedral and tetrahedralcomplexes. 5.1.3) Factors affecting 10 Dq or magnitude of crystal field splitting : Nature of ligand, oxidation state of metal ion, size of d orbital, geometry	Postulates and limitations of VBTand CFT

		of complexes. 5.1.4) Applications of CFT.		
		5.1.5) John teller effect in octahedral complexes of		
		Cu ⁺⁺ . 5.1.6) Limitations of CFT.		
VI	Electronic	5.2.1) Types of electronic transition 5.2.2) Selection	Explain	the
	Spectra of	rule for d-d transistion 5.2.3) Spectroscopic ground	types	of
	Transition	state and spectro-chemical series 5.2.4) Orgel energy	electronic	
	Metal	level diagram for d 1 and d 9 states 5.2.5) Discussion	transition a	and
	complexes	of electronic spectrum of [Ti (H2O)6] ³⁺	selection ru	le
		complex ion		

Specify Course Outcome: Familiarize the students with the concept and principle of Spectroscopy, Amino Acids, Peptides, Molecular Rearrangements, Co-ordination theory and Electronic Spectra of Metal Complexes

Specify Program Outcome: Understand concept of Spectroscopy, Amino Acids, Peptides, MolecularRearrangements, Co-ordination theory and Electronic Spectra.

Signature of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

Name of Teacher: Prof.S. B. Patwari, Dr. H. M. Kasralikar Mr. S. L. Nakkalwar

Department: ChemistryProgram: B. Sc. TY Semester-VSubject: ChemistryCourse Code: CH-304P - XVI

Subject: ChemistryCourse Code: CH-304P -Course Name B. Sc. TY, Sem-VIPaper Title: Physical + Inorganic Chemistry

Unit	Unit Name	Торіс	Unit wise Outcome
Ι	Electrochemistry	i) Introduction, concept of electrode	Familiarize the students
		potential, single electrode potential,	with the concept and
		standard electrode potential, oxidization	principle
		and reduction potential	electrochemistry
		ii) Electrochemical cells, electrolytic	
		and Galvanic cells, reversible and	
		irreversible cells, conventional	
		representation of electrochemical cells.	
		EMF of cell, SHE.	
		iii) Reference electrodes , indicator	
		electrodes, calomel electrodes, Relation	
		between EMF and ΔG , ΔH , ΔS	
		iv) Nernst equation, application of	
		Nernst equation to oxidation half cell	
		and reduction half cell.	
		v) Electrolyte concentration cell,	
		Concentration cell with and without	
		transport. Application of EMF	
		measurement in determination of pH by	
		using i) Quinhydrone	
		electrode b) Glass electrode.	
Π	Thermodynamics I	i) Numerical on Nernst Equation.a) Introduction b) Work function and	Familiarize the students
11	Thermodynamics I	free energy function(G): Helmholtz	with the concept and
		Function (A) or work function, Change	principle of
		of work function (A) at constant	thermodynamics.
		temperature , Gibbs' free energy	thermodynamics.
		function, relation between G and A,	
		change of G at constant temperature,	
		variation of work function with	
		temperature and volume, variation of	
		free energy function with temperature	
		and pressure. The Gibb's-Helmholtz	
		equation.	
		a) The Nernst heat theorem. Third law of	
		thermodynamics. b) Thermodynamics of	
		open system: partial molar properties;	

	क्र प्रमासद, छि, नादिन 🕜				
III	Thermo- dynamics II	concept of chemical potential, partial molar free energy. Gibb's-Duhem equation. Variation of chemical potential with temperature and pressure. Chemical potential in case of a system of ideal gases. Thermodynamic derivation of law of mass action. a) Relation between $\Delta G0$ and KP, relation between KP, KC and KX. b) Vant-Hoff's reaction isochore. Integrated form of Vant-Hoff's equation. c) Clausius-Clapeyron equation and its applications.	Know the Vant-Hoff's Reaction Osochore and numerical on it.		
		d) Numerical on Integrated form of Vant-Hoff'sequation.			
IV	Colligative Properties	 Osmotic pressure. Relative lowering of vapor pressure. Elevation in boiling point. Depression in freezing points and relation of these properties with molecular weight. Numericals on elevation of boiling point and depression in freezing point. 	To know the basic concepts about colligative properties.		
V	Bioinorganic Chemistry	Essential and trace elements in biological processes Metalloporphyrin with special reference to hemoglobin and myoglobin Biological role of alkali and alkaline earth metal ionsNitrogen fixation	Familiarize the students with theconcept and principle of bioinorganic chemistry and role of metal ion in biologicalsystems.		
VI	Metal cluster	Boranes , Carboranes, Metalloboranes, Metallocarboranes	Familiarize the students with the concept of metalclusters.		

Specify Course Outcome: Understand the basic concept of electrochemistry, thermodynamics, magnetometry, bioinorganic chemistry and metal cluster.

Specify Program Outcome: Basic concepts of electrochemistry and its applications. Understanding the Nernst heat theorem and the Thermodynamics open system Know the Vant-Hoff's Reaction Osochore and numerical on it. Explain the types of magnetic substances and effect of temperature on it. Biological role of alkali and alkaline earth metal ions. Describe the structures and functions of Metal Cluster

Name of Teacher: Prof.S. B. Patwari, Dr. H. M. Kasralikar Mr. S. L. Nakkalwar

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

 Name of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H. M. Kasralikar

 Department: Chemistry
 Program: B. Sc. TY Semester –VI

 Subject: Chemistry
 Course Code: SECC-IV

 Paper Title: Spectroscopic Techniques and Cosmetic Preparation
 Paper : SEC IV

<u> </u>	1 Inc. Specirose	opic rechniques and Cosmetic Preparation	Paper: SEC IV
Unit	Unit Name	Торіс	Unit wise
			Outcome
Ι	Instruments in spectroscopy	Instrumentation: Study of UV, IR, NMR and Massspectroscopy	Learn the basic principle and terms used in UV, IR &
			NMR
			Spectroscopy
Π	Determination of structures of organic compounds by using UV, IR, NMR and Mass spectra	Hydrocarbons, unsaturated hydrocarbons, alcohols, amines, aldehydes, ketones, carboxylic acids and esters, acid halides, amides and anhydrides.	Be able to determine the structure by using Spectra
ΠΙ	Preparation of cosmetics	Preparation of talcum powder Preparation of shampoo Preparation of face cream Preparation of pail polich and pail polich	Train the students for the preparation of various
		Preparation of nail polish and nail polish	cosmetics

Specify Course Outcome: Understanding of the basic concept of Spectroscopic Techniques, and cosmeticspreparations.

Specify Program Outcome: Able to determine the structure of organic molecules using spectroscopictechnique and prepare cosmetics.

Signature of Teacher: Dr. N. S. Kaminwar, Mr. S. L. Nakkalwar & Dr. H. M. Kasralikar

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

_____ Name of Teacher: Prof.S. B. Patwari, Dr. N. S. Kaminwar, Dr. H. M. Kasralikar, Mr. S. L. Nakkalwar nistry Program: B. Sc. TY Semester-V & VI Course Code: CH-305 P - XVI Course Name B. Sc. TY, Sem-V &VI

INAKKAIWAI
Department: Chem
Subject: Chemistry

Paper Title: Organic + Inorganic Chemistry P-XVI (Laboratory Course – IV (CH-305)

Ūni	Unit Name	Торіс	Unit wise	
t			Outcome	
Ι	Organic	Separation of organic binary mixture containing two	Know	the
	qualitative	solid components (Using NaHCO3, NaOH and HCl)	Organic	
	analysis	and analysis of (both/one) components with	qualitative	
		preparation one derivative of each.	analysis	
		At least one mixture from each of the following types		
		should be given:		
		a) Acid + Phenol b) Acid + Base		
		c) Acid + Neutral d) Phenol + Base		
		e) Phenol + Neutral f) Base + Neutral		
		g) Neutral+Neutral		
		Following compounds should be used for preparation		
		of mixtures:		
		A] Acids : Salicylic acid, Phenyl acetic acid, o-		
		Chlorobenzoic acid, Succinic acid, phthalic acid,		
		cinnamic acid, Benzoic acid and m-cholorobenzoic		
		acid.		
		B] Phenols : α -naphthol, β -naphthol, resorcinol, p-		
		nitro phenol, m-nitro phenol and hydroquinone, C]		
		Bases : o-nitroaniline, m-nitroaniline, p-nitroaniline,		
		p-anisidine, diphenylamine, p-toluidine and		
		pchloroaniline		
		D] Neutrals : Acetanilide, Anthracene, Benzamide,		
		Benzophenone, Biphenyl, Naphthalene, m-		
		Dinitrobenzene, p-Dichloro benzene and Thiourea.		
Π	Organic	a) Acetylation : Preparation of Aspirin from salicylic	Learn	the
	Preparation	acid OR	Organic	
	-	Preparation of β -naphthyl acetate from β -naphthol	preparation	ıs
		b) Electrophilic substitution : Preparation of p-		
		nitroacetanilide from acetanilide (Nitration)		
		c) Preparation of 2, 4, 6 – Tribromoaniline from		
		aniline(Bromination) OR		
		d) Preparation of p-bromo acetanilide from		
		acetanilide (Bromination)		
		e) Diazotisation : Preparation of Methylorange from		

	🌄 पार्मावाह, हिंद. नांदिङ 📿			
		sulphanilic acid (Coupling)		
		OR e) Osazone formation : Preparation of		
		Glucosazone from Glucose		
		f) Amide Formation : Preparation of Benzamide		
		from benzoic acid Hydrolysis : Preparation of p-		
		nitroaniline from p-nitroacetanilide		
		g) Reduction : Preparation of m-nitroaniline from		
		m-		
		Dinitrobenzene		
		h) Oxidation : Preparation of Benzoic acid from		
		Toluene		
		i) Polymerisation : Preparation of phenol		
		formaldehyde resin		
III	Only	a) Extraction of clove oil from crushed cloves by	Understand the	
	demonstrat-	steam distillation.	chromatograph	
	ions	b) Separation of a mixture of methyl orange and	-ictechniques.	
		methylene blue by column chromatography		
		c) Separation of a mixture of amino acids by		
		ascending paper chromatography.		
		d) Separation of various pigments in the extract of		
		spinach leaves by TLC.		
IV	Gravimetric	1) Gravimetric estimation of Iron as Fe ₂ O ₃ .	Understand the	
	estimations	2) Gravimetric estimation of Ba as BaSO4	Gravimetric	
		3) Gravimetric estimation of Nickel as Ni(DMG)2.	estimations	
		4) Gravimetric estimation of Aluminium as		
		Al(Oxinate) ₃ .		
		5) Gravimetric estimation of zinc as ZnO		
		6) Gravimetric estimation of Chloride as AgCl		

Specify Course Outcome: Familiarize the students with the Organic qualitative analysis, organic preparations, chromatographic techniques and gravimetric estimations.

Specify Program Outcome: Understand concept of Organic qualitative analysis, organic preparations, chromatographic techniques and gravimetric estimations.

Pro-forma for program and course outcomes (2.6.1)) Academic year-2022-23

_____ Name of Teacher: Prof.S. B. Patwari, Dr. N. S. Kaminwar, Dr. H. M. Kasralikar Mr. S. L.

P - XVII

Nakkalwar **Department:** Chemistry Program: B. Sc. TY Semester-V & VI Course Code: CH-306 Subject: Chemistry Course Name B. Sc. TY, Sem-V &VI

Paper Title: Physical + Inorganic Chemistry P-XVII (Laboratory Course - V (CH-305)

Unit	Unit Name	Topic	Unit wise
		Ĩ	Outcome
I	Instrumental	 Determine the normality and strength of oxalic acid conductometrically using standard solution of strong base (NaOH/KOH). Determine the concentration of KCl solution by titrating it with standard solution of AgNO₃ conductometrically. Determine the equivalent conductance of a strong electrolyte at several concentrations and hence verify the Onsager's equation. Determine the normality and strength of acids in mixture [strong acidm(HCl/HNO₃) and weak acid (CH₃COOH/HCOOH)] potentiomrtrically using standard solution of strong base(NaOH/KOH). Determine the dissociation constant of a weak acid (CH₃COOH/HCOOH) potentiometrically using standard solution of strong base (NaOH/KOH). Determination of empirical formula of a complex between Fe⁺³ and 5-sulphosalicylic acid by Job's method colorimetrically. Determination of dissociation constant of an organic acid (CH₃COOH) using various buffers (CH₃COOH + CH₃COONa) pH metrically. To study inversion of cane sugar by 	Outcome Understand the role of instrumentation for for the accurate determination of concentration of solution. solution
		polarimetrically.	
II	Non-	Non-Instrumental	Apply the
	Instrumental	1. Determine the rate constant of the reaction between potassium persulphate and potassium iodide	practical knowledge of
		having equal concentrations of reacting species (a=b).	chemistry for the
		 Determine energy of activation of hydrolysis of an 	verification of
		ester by acid/base.	theoretical
		3. Investigate the reaction between bromic acid and	aspect.

		hdroiodic acid.	
		4. Determine molecular weight of non volatile solute	
		by Rast method / Beckomann's freezing point	
		method.	
		5. Determine enthalpy change of neutralization of a	
		strong acid by a strong base.	
		7. Determine interfacial tension between immiscible	
		liquids, benzene and water by stalagmometer.	
		Determine molecular weight of a polymer by	
		viscosity measurement.	
		6. Separation of mixture of o- and p-nitro anilines on	
		an alumina column.	
III	(Inorganic	1. Inorganic preparations and estimation of metal ion.	Evaluate the
	Chemistry)	a) $[Cu(NH_3)_4]SO_4$	theoretical
		b) $[Ni(NH_3)_6]Cl_2$	concept of
		c) CoCl ₃ .4NH ₃	synthesis of
		d) Sodium trioxalato ferrate	metal complexes
		e) $Hg[Co(SCN)_4]$.	in practical.
		f) Mohr's salt, [FeSO ₄ (NH ₄) ₂ SO ₄].6H ₂ O	

Specify Course Outcome: Understand the concept of instrumentation, non-instrumentation and qualitative analysis for the correct estimation.

Specify Program Outcome: Apply the skill during the instrumentation, non-instrumentation and qualitative analysis for the correct estimation.

Name of Teacher: Prof. S. B. Patwari, Dr. N. S. Kaminwar, Dr. H. M. Kasralikar, Mr. S. L.

Nakkalwar